98%
921
2 minutes
20
Respiratory infectious viruses, including SARS-CoV-2, undergo rapid genetic evolution, resulting in diverse subtypes with complex mutations. Detecting and differentiating these subtypes pose significant challenges in respiratory virus surveillance. To address these challenges, we integrated ARMS-PCR with molecular beacon probes, allowing selective amplification and discrimination of subtypes based on adjacent mutation sites. The method exhibited high specificity and sensitivity, detecting as low as 10 copies/mL via direct fluorescence analysis and ~10 copies/mL using real-time PCR. Our robust detection approach offers a reliable and efficient solution for monitoring evolving respiratory infections, aiding early diagnosis and control measures. Further research could extend its application to other respiratory viruses and optimize its implementation in clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/apm.13388 | DOI Listing |
JAC Antimicrob Resist
October 2025
Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China.
Background: is a cause of sexually transmitted infections (STIs). This study assessed its prevalence, resistance and coinfection with / infections in MSM with HIV.
Methods: MSM in HIV care in Hong Kong were recruited during 2023-24 for completion of an online survey, and self-collection of urine specimens, rectal and pharyngeal swabs, which were tested for .
Cureus
August 2025
Medicine, Academy of Silesia, Katowice, POL.
We present the case of a 45-year-old Caucasian woman diagnosed with synchronous bicentric breast cancer of differing molecular phenotypes in the same breast. The first tumor, an invasive ductal carcinoma (G1), was estrogen and progesterone receptor-positive and HER2-negative, with a low proliferative index (Ki67 10%). A second lesion, located in a different quadrant and appearing within weeks after biopsy, exhibited a triple-negative phenotype and a higher proliferative index (Ki67 30%).
View Article and Find Full Text PDFGene
September 2025
Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China. Electronic address:
Background: Nasopharyngeal carcinoma (NPC) pathogenesis is multi-factorial, involving synergistic interactions among genetic susceptibility, Epstein-Barr virus (EBV) infection, and environmental exposures. Notably, specific multi-generational families exhibit NPC incidence substantially exceeding both sporadic cases and general genetic susceptibility cohorts, demonstrating Mendelian inheritance patterns. This supports the hypothesis that high penetrance pathogenic variants dominate disease initiation and progression in familial NPC.
View Article and Find Full Text PDFJ Inorg Biochem
September 2025
Department of Chemistry & Biochemistry, University of Montana, Missoula, MT 59812, United States; Center for Biomolecular Structure & Dynamics, University of Montana, Missoula, MT 59812, United States. Electronic address:
Omega loop C (residues 40-57) of cytochrome c (Cytc) is a common location for naturally-occurring variants of human Cytc that cause thrombocytopenia 4 (THC4). These variants are characterized by significant increases in the intrinsic peroxidase activity of Cytc, which appears to be linked to increased dynamics in Ω-loop D (residues 71-85). The mutations in Ω-loop C enhance the dynamics of Ω-loop D by decreasing the acid dissociation constant of the trigger group (pK) of the alkaline conformational transition.
View Article and Find Full Text PDFVaccine
September 2025
College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Jiangxia Laboratory, Wuhan 430200, China. Electronic address:
The spillover and spillback of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) between humans and animals, especially companion animals, threaten global public health security. However, risk assessment of SARS-CoV-2 variants infecting companion animals and the development of corresponding prevention and control technologies are lacking. The aim of this study is to assess the potential risk of enhancement of the infectivity of SARS-CoV-2 in cats owing to mutations at key sites within the spike (S) protein receptor-binding domain (RBD) region and develop an efficient vaccine to cross-neutralize high-risk SARS-CoV-2 variants.
View Article and Find Full Text PDF