Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The objective of the present work was to evaluate the potential of a nuclear localization signal (NLS) toward facilitating intracellular delivery and enhancement in the therapeutic efficacy of the molecular cargo. Toward this, an in-house synthesized porphyrin derivative, namely, 5-carboxymethyelene-oxyphenyl-10,15,20-(4-methoxyphenyl) porphyrin (UTriMA), was utilized for conjugation with the NLS sequence [PKKKRKV]. The three compounds synthesized during the course of the present work, namely DOTA-Lys-NLS, DOTA-UTriMA-Lys-NLS, and DOTA-Lys-UTriMA, were evaluated for cellular toxicity in cancer cell lines (HT1080), wherein all exhibited minimal dark toxicity. However, during photocytotoxicity studies with DOTA-Lys-UTriMA and DOTA-UTriMA-Lys-NLS conjugates in the same cell line, the latter exhibited significantly higher light-dependent toxicity compared to the former. Furthermore, the photocytotoxicity for DOTA-UTriMA-Lys-NLS in a healthy cell line (WI26VA4) was found to be significantly lower than that observed in the cancer cells. Fluorescence cell imaging studies carried out in HT1080 cancer cells revealed intracellular accumulation for the NLS-conjugated porphyrin (DOTA-UTriMA-Lys-NLS), whereas unconjugated porphyrin (DOTA-Lys-UTriMA) failed to do so. To evaluate the radiotherapeutic effects of the synthesized conjugates, all three compounds were radiolabeled with Lu, a well-known therapeutic radionuclide with high radiochemical purity (>95%). During in vitro studies, the [Lu]Lu-DOTA-UTriMA-Lys-NLS complex exhibited the highest cell binding as well as internalization among the three radiolabeled complexes. Biological distribution studies for the radiolabeled compounds were performed in a fibrosarcoma-bearing small animal model, wherein significantly higher accumulation and prolonged retention of [Lu]Lu-DOTA-UTriMA-Lys-NLS (9.32 ± 1.27% IA/g at 24 h p.i.) in the tumorous lesion compared to [Lu]Lu-UTriMA-Lys-DOTA (2.3 ± 0.13% IA/g at 24 h p.i.) and [Lu]Lu-DOTA-Lys-NLS complexes (0.26 ± 0.17% IA/g at 24 h p.i.) were observed. The results of the biodistribution studies were further corroborated by recording serial SPECT-CT images of fibrosarcoma-bearing Swiss mice administered with [Lu]Lu-DOTA-UTriMA-Lys-NLS at different time points. Tumor regression studies performed with [Lu]Lu-DOTA-UTriMA-Lys-NLS in the same animal model with two different doses [250 μCi (9.25 MBq) and 500 μCi (18.5 MBq)] resulted in a significant reduction in tumor mass in the treated group of animals. The above results revealed a definite enhancement in the targeting ability of molecular cargo upon conjugation with NLS and hence indicated that this strategy may be helpful for the preparation of drug-NLS conjugates as multimodal agents.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.3c01152DOI Listing

Publication Analysis

Top Keywords

molecular cargo
12
nuclear localization
8
localization signal
8
therapeutic efficacy
8
conjugation nls
8
three compounds
8
cancer cells
8
animal model
8
studies
6
cell
5

Similar Publications

Background: High % of low-voltage area (LVA), a surrogate of scar, is associated with atrial fibrillation (AF) recurrence after pulmonary vein isolation (PVI). Noninvasive biomarkers of LVA are a medical need for PVI decision.

Objective: We aimed to identify the proteome profile of plasma extracellular vesicles (EVs) associated with high % LVA, their cellular origin, and their regulation by hyperglycemia.

View Article and Find Full Text PDF

Kinetic Locking of pH-Sensitive Complexes for Mechanically Responsive Polymer Networks.

J Am Chem Soc

September 2025

Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.

Achieving sensitive and reversible responsivity over physiologically relevant pH ranges (4.5-7.5) remains of great interest for the design of next-generation autonomous drug delivery devices.

View Article and Find Full Text PDF

Treating neurological disorders is challenging due to the blood-brain barrier (BBB), which limits therapeutic agents, including proteins and peptides, from entering the central nervous system. Despite their potential, the BBB's selective permeability is a significant obstacle. This review explores recent advancements in protein therapeutics for BBB-targeted delivery and highlights computational tools.

View Article and Find Full Text PDF

Two major protein recycling pathways have emerged as key regulators of enduring forms of synaptic plasticity, such as long-term potentiation (LTP), yet how these pathways are recruited during plasticity is unknown. Phosphatidylinositol-3-phosphate (PI(3)P) is a key regulator of endosomal trafficking and alterations in this lipid have been linked to neurodegeneration. Here, using primary hippocampal neurons, we demonstrate dynamic PI(3)P synthesis during chemical induction of LTP (cLTP), which drives coordinate recruitment of the SNX17-Retriever and SNX27-Retromer pathways to endosomes and synaptic sites.

View Article and Find Full Text PDF

Study Question: What is the effect of hCG on the epigenetic profile and the expression of other molecular factors in endometrial stromal cells (ESCs)?

Summary Answer: Our findings suggest that hCG treatment alters the molecular environment of decidualized ESCs, potentially influencing implantation and immune regulation through epigenetic modifications and changes in the levels of secreted proteins and micro-ribonucleic acids (miRNAs).

What Is Known Already: Embryo implantation depends not only on the quality of the embryo but also on the receptivity of the endometrium, the specialized lining of the uterus that undergoes dynamic changes to support pregnancy. Effective communication between the maternal and fetal compartments, facilitated by molecular signals and cellular interactions, is essential for successful implantation.

View Article and Find Full Text PDF