Poly(Propylene Carbonate)-Based Biodegradable and Environment-Friendly Materials for Biomedical Applications.

Int J Mol Sci

Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Poly(propylene carbonate) (PPC) is an emerging "carbon fixation" polymer that holds the potential to become a "biomaterial of choice" in healthcare owing to its good biocompatibility, tunable biodegradability and safe degradation products. However, the commercialization and wide application of PPC as a biomedical material are still hindered by its narrow processing temperature range, poor mechanical properties and hydrophobic nature. Over recent decades, several physical, chemical and biological modifications of PPC have been achieved by introducing biocompatible polymers, inorganic ions or small molecules, which can endow PPC with better cytocompatibility and desirable biodegradability, and thus enable various applications. Indeed, a variety of PPC-based degradable materials have been used in medical applications including medical masks, surgical gowns, drug carriers, wound dressings, implants and scaffolds. In this review, the molecular structure, catalysts for synthesis, properties and modifications of PPC are discussed. Recent biomedical applications of PPC-based biomaterials are highlighted and summarized.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10931573PMC
http://dx.doi.org/10.3390/ijms25052938DOI Listing

Publication Analysis

Top Keywords

biomedical applications
8
modifications ppc
8
ppc
5
polypropylene carbonate-based
4
carbonate-based biodegradable
4
biodegradable environment-friendly
4
environment-friendly materials
4
materials biomedical
4
applications
4
applications polypropylene
4

Similar Publications

Wearable bioelectronics for skin cancer management.

Biomaterials

August 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA. Electronic address:

Wearable bioelectronics have transformed modern biomedical applications by enabling seamless integration with biological tissues, providing continuous, comprehensive, and personalized healthcare. Skin cancer, particularly melanoma, poses a significant clinical challenge due to its high metastatic potential and associated mortality. Traditional diagnostic approaches face limitations in accuracy, accessibility, and reproducibility, while existing treatments are often constrained by systemic toxicity and therapeutic resistance.

View Article and Find Full Text PDF

[Bioethics and human person in the context of emerging technologies].

Cuad Bioet

September 2025

Universidad Francisco de Vitoria. Pozuelo de Alarcón Madrid. España.

This article examines the ethical challenges posed by NBIC emerging and converging technologies (na-notechnology, biotechnology, artificial intelligence and information technologies, and cognitive sciences) from the perspective of personalist bioethics. Their biomedical and social applications are described, high-lighting the main values at stake: dignity, life, autonomy, vulnerability, and justice. Finally, guidelines are proposed, inspired by the principles of personalist bioethics: defense of human life, therapeutic totality, responsible freedom, and justice, to ensure that technological development remains at the service of the person and the common good.

View Article and Find Full Text PDF

Sectionally nonlinearly functionally graded (SNFG) structures with triply periodic minimal surface (TPMS) are considered ideal for bone implants because they closely replicate the hierarchical, anisotropic, and porous architecture of natural bone. The smooth gradient in material distribution allows for optimal load transfer, reduced stress shielding, and enhanced bone ingrowth, while TPMS provides high mechanical strength-to-weight ratio and interconnected porosity for vascularization and tissue integration. Wherein, The SNFG structure contains sections with thickness that varies nonlinearly along their length in different patterns.

View Article and Find Full Text PDF

3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.

View Article and Find Full Text PDF

Wounds with extensive tissue damage are highly susceptible for microbial infections delaying the process of wound healing. Currently, biomaterials with therapeutic molecules emerged as key players in wound repairing. This work developed a novel collagen-based hydrogel loaded with allicin and silver nanoparticles.

View Article and Find Full Text PDF