98%
921
2 minutes
20
In recent years, ozone (O) has become an increasingly important air pollutant in China. Identifying the sensitivity of O to the precursors volatile organic compounds (VOCs) and nitrogen oxides (NO) can help make effective abatement strategies. This study compared three methods for determining O-VOCs-NO sensitivity: simulated photochemical indicator values and sensitivity coefficients derived from a three-dimensional air quality model and an observation-based model (OBM), with a case study involving an O pollution event that occurred in Nanjing in late July 2017. The results showed that O sensitivity based on the photochemical indicator and sensitivity coefficients demonstrated similar spatial variations (over 50% of the grid cells of Nanjing exhibiting identical O sensitivity). However, sensitivity coefficients identified a larger number of areas within a transitional O sensitivity regime, as opposed to the VOCs- or NO-limited regime identified by the photochemical indicator. The determination of the latter was affected by the adopted threshold values. The OBM relied on the quality of the observational data. For example, positive biases in observed NO could lead to an underestimation of O sensitivity to NO with the OBM. During the high pollution period, the three methods exhibited significant disparities. The photochemical indicator tended to suggest the VOCs-limited condition, whereas the OBM and sensitivity coefficients indicated the NO-limited or transitional regimes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.13227/j.hjkx.202301164 | DOI Listing |
Luminescence
September 2025
School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou, C
A series of 2-substituted 4H-chromen-4-ones 3a-3h containing triphenylamine or N-phenylcarbazole on the benzene ring were synthesized for the first time via the Suzuki coupling reaction. The photophysical properties of the compounds and their relationship to the structure of the compounds were investigated by methods such as spectroscopic analysis, single-crystal analysis, and theoretical calculations. The systematic results indicate that compounds 3a-3h have intramolecular charge transfer (ICT), aggregation-induced emission (AIE), and dual-state emission (DSE) effects with a wide range of fluorescence emission wavelengths (421-618 nm), showing the potential to be developed into a full-color fluorophore.
View Article and Find Full Text PDFFood Res Int
November 2025
School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China. Electronic address:
Intense pulsed light (IPL) is an emerging surface antimicrobial technology characterized by prominent efficiency but the performance in the decontamination of granular foods is yet to be improved. Using S. Enteritidis as a model bacterium, this article attempted to resolve the confusion on bactericidal mechanism of IPL treatment on spice products.
View Article and Find Full Text PDFJ Control Release
September 2025
Grenoble Alpes University, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Site Santé, Allée des Alpes, 38700 La Tronche, France. Electronic address:
Resistance to chemotherapy remains a significant challenge for the treatment of pancreatic cancer. In addition to conventional therapeutic strategies, photodynamic therapy (PDT) has emerged as a compelling alternative for pancreatic cancer as it synergizes with various chemotherapeutics such as irinotecan, and oxaliplatin. However, the exact mechanisms by which PDT overcomes oxaliplatin resistance remains elusive.
View Article and Find Full Text PDFPlant Sci
September 2025
Instituto de Ciências Naturais (ICN), Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Centro, zip code 37130-001, Alfenas, MG, Brazil. Electronic address:
Phosphorus (P) is an essential macronutrient for plant growth and development; however, both its deficiency and excess can be harmful. Although the effects of excess P are still poorly understood, research has shown that plants exposed to excessive levels of P exhibit reductions in stomatal conductance, photosynthesis, and growth. The aim of this study was to investigate the effect of different P concentrations on stomatal responses, photochemical parameters, growth, and development of three Solanum lycopersicum genotypes: wild type, Never ripe (lower sensitivity to ethylene), and Notabilis (deficient in ABA production).
View Article and Find Full Text PDFTree Physiol
September 2025
College of Science & Engineering and Centre for Tropical Environmental and Sustainability Science, James Cook University, Cairns, QLD, Australia.
Mango (Mangifera indica), a leading tropical fruit crop, is a prime candidate for intensification through modern orchard-management techniques, including canopy manipulation to improve light interception. This study investigated how leaf-level acclimation to light gradients within the canopy of a high-yield, dwarfing mango cultivar (Calypso™) could be used to examine integrated canopy-scale responses. We quantified foliar morphological, biochemical, and physiological traits across a range of canopy positions using this information to model canopy-scale productivity within digital-twin representations of mango under both conventional (i.
View Article and Find Full Text PDF