Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Cervical abnormal cell detection plays a crucial role in the early screening of cervical cancer. In recent years, some deep learning-based methods have been proposed. However, these methods rely heavily on large amounts of annotated images, which are time-consuming and labor-intensive to acquire, thus limiting the detection performance. In this paper, we present a novel Semi-supervised Cervical Abnormal Cell detector (SCAC), which effectively utilizes the abundant unlabeled data. We utilize Transformer as the backbone of SCAC to capture long-range dependencies to mimic the diagnostic process of pathologists. In addition, in SCAC, we design a Unified Strong and Weak Augment strategy (USWA) that unifies two data augmentation pipelines, implementing consistent regularization in semi-supervised learning and enhancing the diversity of the training data. We also develop a Global Attention Feature Pyramid Network (GAFPN), which utilizes the attention mechanism to better extract multi-scale features from cervical cytology images. Notably, we have created an unlabeled cervical cytology image dataset, which can be leveraged by semi-supervised learning to enhance detection accuracy. To the best of our knowledge, this is the first publicly available large unlabeled cervical cytology image dataset. By combining this dataset with two publicly available annotated datasets, we demonstrate that SCAC outperforms other existing methods, achieving state-of-the-art performance. Additionally, comprehensive ablation studies are conducted to validate the effectiveness of USWA and GAFPN. These promising results highlight the capability of SCAC to achieve high diagnostic accuracy and extensive clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2024.3375889DOI Listing

Publication Analysis

Top Keywords

semi-supervised learning
12
cervical abnormal
12
abnormal cell
12
cervical cytology
12
cell detection
8
unlabeled cervical
8
cytology image
8
image dataset
8
cervical
7
scac
6

Similar Publications

Background: Classification of rose species and verities is a challenging task. Rose is used worldwide for various applications, including but not restricted to skincare, medicine, cosmetics, and fragrance. This study explores the potential of Laser-Induced Breakdown Spectroscopy (LIBS) for species and variety classification of rose flowers, leveraging its advantages such as minimal sample preparation, real-time analysis, and remote sensing.

View Article and Find Full Text PDF

A machine learning-based analysis method for small molecule high content screening of three-dimensional cancer spheroid morphology.

Mol Pharmacol

August 2025

Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland. Electronic address:

Although multiparameter cellular morphological profiling methods and three-dimensional (3D) biological model systems can potentially provide complex insights for pharmaceutical discovery campaigns, there have been relatively few reports combining these experimental approaches. In this study, we used the U87 glioblastoma cell line grown in a 3D spheroid format to validate a multiparameter cellular morphological profiling screening method. The steps of this approach include 3D spheroid treatment, cell staining, fully automated digital image acquisition, image segmentation, numerical feature extraction, and multiple machine learning approaches for cellular profiling.

View Article and Find Full Text PDF

The IPSS-M was developed to revolutionize the prediction of MDS patients' survival by incorporating molecular data. To compensate for lack of access to molecular analyses, the AIPSS-MDS, a supervised machine learning algorithm exclusively based on clinical and cytogenetic data, was developed by the Spanish MDS Group. We used data of the Düsseldorf MDS Registry and included 207 of more than 8500 registry patients whose IPSS-M-requested complete molecular data were known to compare and validate prognostication regarding OS and LFS of the IPSS-M, IPSS-R and AIPSS-MDS.

View Article and Find Full Text PDF

Background: The clinical diagnosis of tremor disorders depends on the interpretation of subtle movement characteristics, signs, and symptoms. Given the absence of a universally accepted biomarker, differentiation between essential tremor (ET) and tremor-dominant Parkinson's disease (PD) frequently proves to be non-trivial.

Objective: To identify generalizable tremor characteristics to differentiate ET and PD using feature extraction and machine learning (ML).

View Article and Find Full Text PDF

Background: The generation of intelligible speech is the single most important outcome after cleft palate repair. The development of velopharyngeal dysfunction (VPD) compromises the outcome, and the burden of VPD remains largely unknown in low- and middle-income countries (LMICs). To scale up VPD care in these areas, we continue to explore the use of artificial intelligence (AI) and machine learning (ML) for automatic detection of VPD from speech samples alone.

View Article and Find Full Text PDF