Anomaly detection in IoT-based healthcare: machine learning for enhanced security.

Sci Rep

Information Systems Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Internet of Things (IoT) integration in healthcare improves patient care while also making healthcare delivery systems more effective and economical. To fully realize the advantages of IoT in healthcare, it is imperative to overcome issues with data security, interoperability, and ethical considerations. IoT sensors periodically measure the health-related data of the patients and share it with a server for further evaluation. At the server, different machine learning algorithms are applied which help in early diagnosis of diseases and issue alerts in case vital signs are out of the normal range. Different cyber attacks can be launched on IoT devices which can result in compromised security and privacy of applications such as health care. In this paper, we utilize the publicly available Canadian Institute for Cybersecurity (CIC) IoT dataset to model machine learning techniques for efficient detection of anomalous network traffic. The dataset consists of 33 types of IoT attacks which are divided into 7 main categories. In the current study, the dataset is pre-processed, and a balanced representation of classes is used in generating a non-biased supervised (Random Forest, Adaptive Boosting, Logistic Regression, Perceptron, Deep Neural Network) machine learning models. These models are analyzed further by eliminating highly correlated features, reducing dimensionality, minimizing overfitting, and speeding up training times. Random Forest was found to perform optimally across binary and multiclass classification of IoT Attacks with an approximate accuracy of 99.55% under both reduced and all feature space. This improvement was complimented by a reduction in computational response time which is essential for real-time attack detection and response.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928137PMC
http://dx.doi.org/10.1038/s41598-024-56126-xDOI Listing

Publication Analysis

Top Keywords

machine learning
16
iot attacks
8
random forest
8
iot
7
anomaly detection
4
detection iot-based
4
healthcare
4
iot-based healthcare
4
machine
4
healthcare machine
4

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF