98%
921
2 minutes
20
Objective: To apply a machine learning analysis to clinical and presynaptic dopaminergic imaging data of patients with rapid eye movement (REM) sleep behavior disorder (RBD) to predict the development of Parkinson disease (PD) and dementia with Lewy bodies (DLB).
Methods: In this multicenter study of the International RBD study group, 173 patients (mean age 70.5 ± 6.3 years, 70.5% males) with polysomnography-confirmed RBD who eventually phenoconverted to overt alpha-synucleinopathy (RBD due to synucleinopathy) were enrolled, and underwent baseline presynaptic dopaminergic imaging and clinical assessment, including motor, cognitive, olfaction, and constipation evaluation. For comparison, 232 RBD non-phenoconvertor patients (67.6 ± 7.1 years, 78.4% males) and 160 controls (68.2 ± 7.2 years, 53.1% males) were enrolled. Imaging and clinical features were analyzed by machine learning to determine predictors of phenoconversion.
Results: Machine learning analysis showed that clinical data alone poorly predicted phenoconversion. Presynaptic dopaminergic imaging significantly improved the prediction, especially in combination with clinical data, with 77% sensitivity and 85% specificity in differentiating RBD due to synucleinopathy from non phenoconverted RBD patients, and 85% sensitivity and 86% specificity in discriminating PD-converters from DLB-converters. Quantification of presynaptic dopaminergic imaging showed that an empirical z-score cutoff of -1.0 at the most affected hemisphere putamen characterized RBD due to synucleinopathy patients, while a cutoff of -1.0 at the most affected hemisphere putamen/caudate ratio characterized PD-converters.
Interpretation: Clinical data alone poorly predicted phenoconversion in RBD due to synucleinopathy patients. Conversely, presynaptic dopaminergic imaging allows a good prediction of forthcoming phenoconversion diagnosis. This finding may be used in designing future disease-modifying trials. ANN NEUROL 2024;95:1178-1192.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11102309 | PMC |
http://dx.doi.org/10.1002/ana.26902 | DOI Listing |
Mol Ther Nucleic Acids
September 2025
Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA.
Parkinson's disease (PD) is a debilitating neurodegenerative condition. Synaptic dysfunctions are associated with the onset and progressive neurodegeneration exhibited in PD. Healthy, active synapses are a prerequisite for non-pathological neurotransmission.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
August 2025
Department of Biomedical Sciences, University of Missouri-Kansas City, School of Medicine, Kansas City, MO 64108, USA.
Glutamate is an important neurotransmitter in the mammalian brain. Among the receptors that glutamate interacts with is metabotropic glutamate (mGlu) receptor 2, a Gα-coupled receptor. These receptors are primarily located on glutamatergic nerve terminals and act as presynaptic autoreceptors to produce feedback inhibition of glutamate release.
View Article and Find Full Text PDFSci Rep
August 2025
Department of Pharmacology, Nippon Medical School, Tokyo, 113-8602, Japan.
Modulation of synaptic transmission in the deep cerebellar nuclei, a major output region of the cerebellum, is essential for regulating motor and non-motor functions by controlling information flow from the cerebellar cortex. In this study, we aimed to investigate the effects of dopamine (DA) and noradrenaline (NA) on glutamatergic synaptic transmission using cerebellar slices from both male and female Wistar rats. Stimulation-evoked excitatory postsynaptic currents (eEPSCs) were recorded from deep cerebellar nuclei neurons using whole-cell patch-clamp technique.
View Article and Find Full Text PDFNeurol Int
July 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
Background: Cerebrotendinous Xanthomatosis (CTX) is a rare, inherited metabolic disease caused by pathogenic variants in . The clinical presentation of this progressive disease includes cognitive deficits, ataxia, peripheral neuropathy, and pyramidal signs, as well as bilateral cataracts and tendon xanthomas. In some cases, CTX also includes parkinsonism.
View Article and Find Full Text PDFNat Commun
August 2025
Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.
Adolescence is a sensitive period for frontal cortical development and cognitive maturation, marked by heightened structural plasticity in the dopaminergic (DA) mesofrontal circuit. However, the cellular and molecular mechanisms underlying this plasticity remain unclear. Here, we show that microglia, the brain's innate immune cells, are highly responsive to mesofrontal DA signaling during adolescence.
View Article and Find Full Text PDF