98%
921
2 minutes
20
Single exon duplications account for disease in a minority of Duchenne muscular dystrophy patients. Exon skipping in these patients has the potential to be highly therapeutic through restoration of full-length dystrophin expression. We conducted a 48-week open label study of casimersen and golodirsen in 3 subjects with an exon 45 or 53 duplication. Two subjects (aged 18 and 23 years) were non-ambulatory at baseline. Upper limb, pulmonary, and cardiac function appeared stable in the 2 subjects in whom they could be evaluated. Dystrophin expression increased from 0.94 % ±0.59% (mean±SD) of normal to 5.1% ±2.9% by western blot. Percent dystrophin positive fibers also rose from 14% ±17% at baseline to 50% ±42% . Our results provide initial evidence that the use of exon-skipping drugs may increase dystrophin levels in patients with single-exon duplications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11091625 | PMC |
http://dx.doi.org/10.3233/JND-230107 | DOI Listing |
J Neurochem
September 2025
Department of Biology and Biotechnologies "Charles Darwin", Sapienza University of Rome, Rome, Italy.
Patients with Duchenne muscular dystrophy (DMD) may experience neurobehavioral and cognitive concerns, including psychiatric symptoms, due to the absence of full-length dystrophin (Dp427), frequently accompanied by deficiencies in shorter isoforms. The lack of dystrophin affects neurophysiological processes from the uterine phase, impacting neural circuitry in brain regions such as the prefrontal cortex, hippocampus, and cerebellum. This leads to reduced inhibitory GABAergic transmission and altered hippocampal glutamatergic signaling.
View Article and Find Full Text PDFInt J Mol Sci
August 2025
Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico.
The functional diversity of β-dystroglycan is attributable to its dual distribution, the plasma membrane, and the nucleus. In the plasma membrane, β-DG is a component of the dystrophin-associated protein complex. In the nucleus, β-DG assembles with the nuclear lamina and emerin.
View Article and Find Full Text PDFBiomedicines
August 2025
Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, NHC Key Laboratory of Chronobiology, Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
Skeletal muscle, constituting ~40% of body mass, serves as a primary effector for movement and a key metabolic regulator through myokine secretion. Hereditary myopathies, including dystrophinopathies (DMD/BMD), limb-girdle muscular dystrophies (LGMD), and metabolic disorders like Pompe disease, arise from pathogenic mutations in structural, metabolic, or ion channel genes, leading to progressive weakness and multi-organ dysfunction. Gene therapy has emerged as a transformative strategy, leveraging viral and non-viral vectors to deliver therapeutic nucleic acids.
View Article and Find Full Text PDFGene Ther
August 2025
Department of Paediatrics, University of Oxford, IDRM, Oxford, OX3 7TY, UK.
Duchenne muscular dystrophy (DMD) is caused by pathogenic sequence variants occurring in the DMD gene which lead to the loss of the dystrophin protein, a molecular 'shock absorber' that protects muscle from contraction-induced injury. The large size of the dystrophin open reading frame precludes delivery of the full-length protein using a single adeno-associated virus (AAV) vector, which led to the development of internally-deleted dystrophin minigenes encoding partially-functional dystrophin. Indeed, five such microdystrophin therapies have been assessed in various clinical programmes.
View Article and Find Full Text PDFNat Commun
August 2025
Biomedical Pioneering Innovation Center, Peking-Tsinghua Center for Life Sciences, Peking University Genome Editing Research Center, State Key Laboratory of Gene Function and Modulation Research, School of Life Sciences, Peking University, Beijing, P.R. China.
Circular RNA (circRNA) has gained significant attention in RNA therapeutics due to its enhanced stability and protein-coding potential. In this study, we present two in vitro RNA circularization techniques, namely Permuted Intron-Exon through Trans-splicing (PIET) and Complete self-splicing Intron for RNA Circularization (CIRC). PIET leverages the second step of group I intron splicing, offering an alternative circularization strategy.
View Article and Find Full Text PDF