Backbone and Side Group Interchain Correlations Govern Wide-Angle X-ray Scattering of Poly(3-hexylthiophene).

ACS Macro Lett

Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Identifying the origin of scattering from polymer materials is crucial to infer structural features that can relate to functional properties. Here, we use our recently developed virtual-site coarse graining to accelerate atomistic simulations and show how various molecular features govern wide-angle X-ray scattering from a conjugated polymer, poly(3-hexylthiophene) (P3HT). The efficient molecular dynamics simulations can represent the structure and capture the emergence of crystalline order from amorphous melts upon cooling while retaining atomistic details of chain configurations. The scattering extracted from simulations shows good agreement with wide-angle X-ray scattering experiments. Amorphous P3HT exhibits broad scattering peaks: a high- peak from interchain side-group correlations and a low- peak from interchain backbone-backbone correlations. During amorphous to crystalline phase transitions, the distance between backbones along the side-group direction increases because of lack of interdigitation in the crystalline phase. Scattering from π-π stacking emerges only after crystallization takes place. Intrachain correlations contribute negligibly to the scattering from the amorphous and crystalline phases.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsmacrolett.3c00740DOI Listing

Publication Analysis

Top Keywords

wide-angle x-ray
12
x-ray scattering
12
govern wide-angle
8
scattering
8
peak interchain
8
amorphous crystalline
8
crystalline phase
8
backbone side
4
side group
4
group interchain
4

Similar Publications

Microfibers are pollutants of increasing concern, as they accumulate in aquatic environments and pose risks to living organisms. Once released, they undergo degradation processes that reduce their size and enhance their ability to interact with biological systems. Among these processes, photodegradation is a key driver, leading to fiber fragmentation and structural shrinkage.

View Article and Find Full Text PDF

The crystallization behavior of ionic liquids (ILs) 1-butyl-3-methylimidazolium [BMIM] hexafluorophosphate [PF] and chloride [Cl] is investigated upon confinement in 2.3 or 8.2 nm diameter silica nanopore arrays, along with the effects of covalently modifying the pore walls with 1-(3-trimethoxysilylpropyl)3-methylimidazolium [TMS-MIM] groups.

View Article and Find Full Text PDF

Achieving quantitative control over interlayer spacing in multilayer two-dimensional (2D) supramolecular organic frameworks (SOFs) remains a fundamental challenge. Here, we report a molecular pillar engineering strategy enabling programmable vertical expansion of bilayer architectures. By designing elongated bipyridine pillars L2/L3 (3.

View Article and Find Full Text PDF

Phase segregation remains one of the most critical challenges limiting the performance and long-term operational stability of wide-bandgap perovskite solar cells (PSCs). This issue is especially pronounced in 1.84 eV wide-bandgap (WBG) perovskites, where severe halide phase segregation leads to compositional heterogeneity and accelerated device degradation.

View Article and Find Full Text PDF

Distinct Hole and Electron Transport Anisotropy in Ambipolar Nickel Dithiolene-Based Semiconductor.

Angew Chem Int Ed Engl

September 2025

The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.

Understanding anisotropic charge transport in molecular semiconductors is crucial for device optimization, yet its intricate dependence on orbital-specific intermolecular interactions and molecular packing remains a challenge, especially in ambipolar systems. In ambipolar semiconductors, where both holes and electrons participate in conduction, distinct molecular orbitals prompt a critical inquiry: can orbital variations result in coexisting yet distinct anisotropic transport properties within a single component? We confirm this possibility by demonstrating that the air-stable nickel dithiolene, Ni(4OPr), exhibits such behavior. Despite its herringbone stacking implying a two-dimensional electronic structure, Ni(4OPr) uniquely exhibits distinct intermolecular interactions for hole (HOMO-to-HOMO; HOMO = highest occupied molecular orbital) and electron (LUMO-to-LUMO; LUMO = lowest unoccupied molecular orbital) transport.

View Article and Find Full Text PDF