Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

One of the comprehensive ways of heat transport performance augmentation of thermo-fluid systems is to use nanofluid over base fluid. This study mainly scrutinizes several existing models of thermal conduction coefficient and absolute viscosity of AlO-water nanofluid with the experimental data. A benchmark problem of natural convective flow is selected to test the performance of the available nanofluid models. The Rayleigh number varies between 10 and 10, while the solid-volume proportion () changes from 0 to 4%. The governing mathematical model is numerically discretized via the Galerkin finite element procedure under appropriate auxiliary conditions. The results produced by the models are verified with the existing experimental findings based on the evaluation of the Prandtl number and average Nusselt number. It has been confirmed that the AH model (Azmi's viscosity and Ho's conductivity models) is suitable for lower nanoparticle concentration ( = 0.01), the AM model (Azmi's viscosity and Maxwell's conductivity models) for moderate concentration (0.01 <  < 0.04), and the NH model (Ngueyn's viscosity and Ho's conductivity models) for higher value of the solid-volume proportion ( = 0.04).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10918198PMC
http://dx.doi.org/10.1016/j.heliyon.2024.e26964DOI Listing

Publication Analysis

Top Keywords

alo-water nanofluid
8
natural convective
8
convective flow
8
model azmi's
8
azmi's viscosity
8
conductivity models
8
models
6
revisiting thermo-physical
4
thermo-physical property
4
property models
4

Similar Publications

Solar-Enhanced Blue Energy Conversion via Photo-electric/thermal in GO/MoS/CNC Nanofluidic Membranes.

Small

September 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.

In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.

View Article and Find Full Text PDF

Unveiling Ion-Transport Dynamics in 2D Nanofluidic Anion-Selective Membranes toward Osmotic Energy Harvesting.

Nano Lett

September 2025

State Key Laboratory of Materials Low-Carbon Recycling, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, P. R. China.

Two-dimensional (2D) nanofluidic architectures with nanoconfined interlayer channels and excess surface charges have revolutionized membrane-based reverse electrodialysis systems, demonstrating highly efficient osmotic energy collection through strong electrostatic screening of electric double layer (EDL). However, the ion-transport dynamics in 2D nanofluidic anion-selective membranes (2D-NAMs) still remain unexplored. Here, we combine density functional theory and molecular dynamics (MD) simulations to systematically explore ion transport in the 2D-NAMs.

View Article and Find Full Text PDF

Bent-core nematic liquid crystals exhibit unique properties, including giant flexoelectricity and polar electro-optic responses, making them ideal for energy conversion and electro-optic applications. When confined in nanopores, they can stabilize chiral nanostructures, enhance polar order, and enable defect-driven switching - offering potential in nanofluidics, sensing, and adaptive optics. The thermotropic ordering of the bent-core dimer CB7CB confined in anodic aluminum oxide (AAO) and silica membranes with precisely engineered cylindrical nanochannels - ranging from just a few nanometers to several hundred nanometers-is examined.

View Article and Find Full Text PDF

Nucleophilic substitution reaction (SR) plays a crucial role in traditional organic chemistry, and its extension into two dimensional (2D) materials has recently created a series of functional materials and advanced applications. However, the traditional SR process is usually indiscriminately copied into existing 2D reaction systems, which tremendously restricts the development of special 2D functional materials and sophisticated applications. In this work, a brand-new spin-active polarons-induced SR process in typical 2D fluorographene (FG) is proposed, where nucleophiles preferentially attack particular oxygen groups for functional grafting, simultaneously inducing the generation of spin-active polarons and subsequently rapid defluorination on the FG nanosheet.

View Article and Find Full Text PDF

Machine-Learning Potential Molecular Dynamics Reveals the Critical Role of Flexibility in Solid-Liquid Nanofluidic Friction.

ACS Nano

September 2025

College of Energy, Soochow Institute for Energy and Materials InnovationS (SIEMIS), Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou 215006, China.

The confining walls made by 2D materials are often considered solid boundary conditions in studies of fluid transport through nanochannels, while the atomically thin walls inherently exhibit thermal fluctuations at a finite temperature. In this work, we investigate the solid-liquid interfacial friction properties of water confined within flexible nanochannels using machine-learning-potential molecular dynamics. Surprisingly, we find that the friction coefficient (λ) increases with lateral size in the flexible nanochannels, following a linear relationship with 1/, which is absent in rigid channels.

View Article and Find Full Text PDF