Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Iron overload can lead to organ and cell injuries. Although the mechanisms of iron-induced cell damage have been extensively studied using various cells, little is known about these processes in kidney cells. In this study, we first examined the correlation between serum iron levels and kidney function. Subsequently, we investigated the molecular impact of excess iron on kidney cell lines, HEK293T and HK-2. The presence of the upregulated protein was further validated in urine. The results revealed that excess iron caused significant cell death accompanied by morphological changes. Transcriptomic analysis revealed an up-regulation of the ferroptosis pathway during iron treatment. This was confirmed by up-regulation of ferroptosis markers, ferritin light chain (FTL), and prostaglandin-endoperoxide synthase 2 (PTGS2), and down-regulation of acyl-CoA synthetase long-chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4) using real-time PCR and Western blotting. In addition, excess iron treatment enhanced protein and lipid oxidation. Supportively, an inverse correlation between urinary FTL protein level and kidney function was observed. These findings suggest that excess iron disrupts cellular homeostasis and affects key proteins involved in kidney cell death. Our study demonstrated that high iron levels caused kidney cell damage. Additionally, urinary FTL might be a useful biomarker to detect kidney damage caused by iron toxicity. Our study also provided insights into the molecular mechanisms of iron-induced kidney injury, discussing several potential targets for future interventions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10916690PMC
http://dx.doi.org/10.3389/fmolb.2024.1352032DOI Listing

Publication Analysis

Top Keywords

kidney cell
16
excess iron
16
cell damage
12
urinary ftl
12
iron
9
iron-induced kidney
8
insights molecular
8
molecular mechanisms
8
mechanisms iron-induced
8
kidney
8

Similar Publications

Objective: Interleukin-17-producing CD4 Th17 cells contribute to the pathogenesis of autoimmune diseases, including crescentic glomerulonephritis. Although ADAM9 has been reported to contribute to organ inflammation, the mechanism remains poorly understood. The goal of the current study was to investigate how ADAM9 alters T cell metabolism to promote the generation of Th17 cell differentiation.

View Article and Find Full Text PDF

Background: Inflammation and hyperuricemia are closely associated with chronic kidney disease (CKD). The systemic inflammation response index (SIRI), systemic immune-inflammation index (SII), monocyte-to-lymphocyte ratio (MLR), neutrophil-to-lymphocyte ratio (NLR), and platelet-to-lymphocyte ratio (PLR) are emerging as novel biomarkers. While, the synergistic effects of these biomarkers with hyperuricemia on CKD remain unclear.

View Article and Find Full Text PDF

Shiga toxin (Stx) is a virulence factor produced by serotype 1 and Stx-producing (STEC). It causes severe renal damage, leading to hemolytic uremic syndrome (HUS). The main target organ of Stx, the kidney, plays a role in maintaining water homeostasis in the body by increasing an osmotic gradient from the cortex to the medulla.

View Article and Find Full Text PDF

Over 60 % of kidney transplant candidates are non-sensitised while remaining 40 % are sensitised because of previous exposure to human alloantigens during previous transplants, blood transfusions, and pregnancy in women. Pre-transplant compatibility testing is mandatory prior to renal transplantation for detecting the presence of donor-specific antibodies (DSAs), which are associated with early hyperacute/acute and later chronic rejections. Initially, complement-dependent cytotoxicity crossmatch (CDCXM) was used as a traditional method for detecting preformed DSAs.

View Article and Find Full Text PDF

TRAP1 and its therapeutic potential.

Bioorg Med Chem Lett

September 2025

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States. Electronic address:

The mitochondrial Hsp90 isoform, Tumor Necrosis Factor Receptor Associated Protein 1 (TRAP1), is central to the pathogenesis of disease states that include cancer, ischemic retinopathy, and diabetic kidney disease among others. TRAP1 contributes to these diseases through the regulation of mitochondrial metabolism, apoptosis, oxidative stress, cell signaling and angiogenesis through interactions with client proteins. Numerous TRAP1-selective inhibitors have been developed to limit the toxicities associated with Hsp90 pan-inhibition, while leveraging the therapeutic benefits of TRAP1 inhibition.

View Article and Find Full Text PDF