A virus-like particle candidate vaccine based on CRISPR/Cas9 gene editing technology elicits broad-spectrum protection against SARS-CoV-2.

Antiviral Res

College of Veterinary Medicine, Jilin University, Changchun, 130062, Jilin, China; Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, Jilin, China. Electronic address:

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with frequent mutations has seriously damaged the effectiveness of the 2019 coronavirus disease (COVID-19) vaccine. There is an urgent need to develop a broad-spectrum vaccine while elucidating the underlying immune mechanisms. Here, we developed a SARS-CoV-2 virus-like particles (VLPs) vaccine based on the Canarypox-virus vector (ALVAC-VLPs) using CRISPR/Cas9. Immunization with ALVAC-VLPs showed the effectively induce SARS-CoV-2 specific T and B cell responses to resist the lethal challenge of mouse adaptive strains. Notably, ALVAC-VLPs conferred protection in golden hamsters against SARS-CoV-2 Wuhan-Hu-1 (wild-type, WT) and variants (Beta, Delta, Omicron BA.1, and BA.2), as evidenced by the prevention of weight loss, reduction in lung and turbinate tissue damage, and decreased viral load. Further investigation into the mechanism of immune response induced by ALVAC-VLPs revealed that toll-like receptor 4 (TLR4) mediates the recruitment of dendritic cells (DCs) to secondary lymphoid organs, thereby initiating follicle assisted T (Tfh) cell differentiation, the proliferation of germinal center (GC) B cells and plasma cell production. These findings demonstrate the immunogenicity and efficacy of the safe ALVAC-VLPs vaccine against SARS-CoV-2 and provide valuable insight into the development of COVID-19 vaccine strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.antiviral.2024.105854DOI Listing

Publication Analysis

Top Keywords

vaccine based
8
covid-19 vaccine
8
vaccine
6
sars-cov-2
6
alvac-vlps
5
virus-like particle
4
particle candidate
4
candidate vaccine
4
based crispr/cas9
4
crispr/cas9 gene
4

Similar Publications

Background: Between November 2023 and March 2024, coastal Kenya experienced another wave of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections detected through our continued genomic surveillance. Herein, we report the clinical and genomic epidemiology of SARS-CoV-2 infections from 179 individuals (a total of 185 positive samples) residing in the Kilifi Health and Demographic Surveillance System (KHDSS) area (~ 900 km).

Methods: We analyzed genetic, clinical, and epidemiological data from SARS-CoV-2 positive cases across pediatric inpatient, health facility outpatient, and homestead community surveillance platforms.

View Article and Find Full Text PDF

Background: Little is documented on key community-based One Health (OH) approach implementation, pro-activeness and effectiveness of interactions and strategies against Mpox outbreak public health emergency in international concern (PHEIC) in various African countries in order to stamp out the persisting Mpox outbreak threat and burden. Prioritizing critical community-based interventions and lessons learned from previous COVID-19, Mpox, Ebola, COVID-19, Rift Valley Fever and Marburg virus outbreaks revealed critical shortcomings in funding, surveillance, and community engagement that plague public health initiatives across the continent. The article provides critical insights and benefits of community-based One Health approaches implementation against Mpox outbreak management in Africa.

View Article and Find Full Text PDF

Systematic review of pro-equity strategies to improve vaccination among priority populations.

Vaccine

September 2025

Sydney School of Public Health, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia; Sydney Infectious Diseases Institute, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia. Electronic address:

Background/objectives: The importance of pro-equity strategies in addressing disadvantages that people and communities face due to their gender, migration status, ethnicity, disability, and place of residence is increasingly being recognised, but analysis of empirical evidence on how they improve vaccination in these priority groups is limited. This systematic review aims to fill this gap.

Methods: Standard evidence synthesis methods were employed, with searches conducted in four major bibliographic databases in March 2025.

View Article and Find Full Text PDF

During the vaccine production through the chick embryo cultivation method, harmful cracks may occur from the perforation of a trocar on the eggshell, around the impact hole, leading to the failure of cultivation. To detect the perforative cracks, this study proposes a method based on acoustic responses. By stimulating the embryo eggs and collecting the acoustic signals, 7 characteristic values were extracted from the time and the frequency domains: The maximum value in the time domain; The difference in the time domain; The frequency-domain peaks, 870 Hz, 1250 Hz, 1470 Hz and 1770 Hz; The mean value of the waveform.

View Article and Find Full Text PDF

Purpose: Expanding high-risk human papillomavirus (HPV) vaccine coverage in resource-constrained settings is critical to bridging the cervical cancer gap and achieving the global action plan for elimination. Mobile health (mHealth) technology via short message services (SMS) has the potential to improve HPV vaccination uptake. The mHealth-HPVac study evaluated the effectiveness of mHealth interventions in increasing HPV vaccine uptake among mothers of unvaccinated girls aged 9-14 years in Lagos, Nigeria.

View Article and Find Full Text PDF