98%
921
2 minutes
20
The thermal bleaching percentage of coral holobionts shows interspecific differences under heat-stress conditions, which are closely related to the coral-associated microbiome. However, the ecological effects of community dynamics and interactions between Symbiodiniaceae and fungi on coral thermal bleaching susceptibility remain unclear. In this study, we analyzed the diversity, community structure, functions, and potential interaction of Symbiodiniaceae and fungi among 18 coral species from a high thermal bleaching risk atoll using next-generation sequencing. The results showed that heat-tolerant C3u sub-clade and dominated the Symbiodiniaceae community of corals and that there were no core amplicon sequence variants in the coral-associated fungal community. Fungal richness and the abundance of confirmed functional animal-plant pathogens were significantly positively correlated with the coral thermal bleaching percentage. Fungal indicators, including Didymellaceae, Chaetomiaceae, , and , were identified in corals. Each coral species had a complex Symbiodiniaceae-fungi interaction network (SFIN), which was driven by the dominant Symbiodiniaceae sub-clades. The SFINs of coral holobionts with low thermal bleaching susceptibility exhibited low complexity and high betweenness centrality. These results indicate that the extra heat tolerance of coral in Huangyan Island may be linked to the high abundance of heat-tolerant Symbiodiniaceae. Fungal communities have high interspecific flexibility, and the increase of fungal diversity and pathogen abundance was correlated with higher thermal bleaching susceptibility of corals. Moreover, fungal indicators were associated with the degrees of coral thermal bleaching susceptibility, including both high and intermediate levels. The topological properties of SFINs suggest that heat-tolerant coral have limited fungal parasitism and strong microbial network resilience.IMPORTANCEGlobal warming and enhanced marine heatwaves have led to a rapid decline in coral reef ecosystems worldwide. Several studies have focused on the impact of coral-associated microbiomes on thermal bleaching susceptibility in corals; however, the ecological functions and interactions between Symbiodiniaceae and fungi remain unclear. We investigated the microbiome dynamics and potential interactions of Symbiodiniaceae and fungi among 18 coral species in Huangyan Island. Our study found that the Symbiodiniaceae community of corals was mainly composed of heat-tolerant C3u sub-clade and . The increase in fungal diversity and pathogen abundance has close associations with higher coral thermal bleaching susceptibility. We first constructed an interaction network between Symbiodiniaceae and fungi in corals, which indicated that restricting fungal parasitism and strong interaction network resilience would promote heat acclimatization of corals. Accordingly, this study provides insights into the role of microorganisms and their interaction as drivers of interspecific differences in coral thermal bleaching.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11022545 | PMC |
http://dx.doi.org/10.1128/aem.01939-23 | DOI Listing |
Sci Total Environ
August 2025
School of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210, USA. Electronic address:
Coral reefs are threatened worldwide from unprecedented increases in ocean temperatures, resulting in corals gradually living closer to their maximum thermal threshold. With ocean temperatures expected to warm up to 3 °C by 2100, understanding the effects of chronic elevated baseline temperature is important in determining the thermal physiological limits of corals and developing realistic restoration strategies to ensure the future of coral reefs. Here, we tested the effects of 26 weeks (i.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Laboratorio de Investigación Química y Farmacológica de Productos Naturales, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro 76010, Mexico.
The hydrocoral (fire coral) plays a critical role in reef structure and relies on a symbiotic relationship with Symbiodiniaceae algae. Environmental stressors derived from climate change, such as UV radiation and elevated temperatures, disrupt this symbiosis, leading to bleaching and threatening reef survival. To gain insight into the thermal stress response of this reef-building hydrocoral, this study investigates the proteomic response of to bleaching during the 2015-2016 El Niño event.
View Article and Find Full Text PDFGels
August 2025
Yibin Academy of Southwest University, Yibin 644000, China.
Pineapple peel cellulose nanofibrils (PCNFs) were facilely prepared by the ball milling method assisted by alkali solution (3 wt% NaOH) and a wet grinding medium, using various treated pineapple peels (hot water treatment (WT), bleaching treatment (BT), alkaline treatment (AT), and baleaching-alkaline treatment (ABT)) as raw materials. The structure of the obtained PCNFs (i.e.
View Article and Find Full Text PDFAppl Radiat Isot
August 2025
Physics Department, University of Botswana, Private Bag 0022, Gaborone, Botswana. Electronic address:
Thermoluminescence and structural characteristics of volcanic, hydrothermal and metamorphic quartz from three different geological locations in Botswana are reported. The glow curves of the volcanic, hydrothermal and metamorphic quartz showed three (near 82, 201, and 295°C), two (near 80 and 247°C) and two (near 83 and 367°C) clear peaks respectively. All the samples exhibited the "110 °C", which is fairly isolated, around 82°C.
View Article and Find Full Text PDFFood Chem
August 2025
Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany. Electronic address:
Ultrasound-assisted acid-catalyzed hydrolysis produced moderately elongated, rod-like cellulose nanocrystals (CNCs) from bleached cellulosic fibrils of sweet cherry stalks (SCSs). Ultra-white SCS-derived CNCs, with desired hydrophilicity were 327.1 nm particles with a ζ-potential of -34.
View Article and Find Full Text PDF