Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Encapsulating enzymes within metal-organic frameworks has enhanced their structural stability and interface tunability for catalysis. However, the small apertures of the frameworks restrict their effectiveness to small organic molecules. Herein, we present a green strategy directed by visible linker micelles for the aqueous synthesis of MAF-6 that enables enzymes for the catalytic asymmetric synthesis of chiral molecules. Due to the large pore aperture (7.6 Å), double the aperture size of benchmark ZIF-8 (3.4 Å), MAF-6 allows encapsulated enzyme BCL to access larger substrates and do so faster. Through the optimization of surfactants' effect during synthesis, BCL@MAF-6-SDS (SDS = sodium dodecyl sulfate) displayed a catalytic efficiency (/) that was 420 times greater than that of BCL@ZIF-8. This biocomposite efficiently catalyzed the synthesis of drug precursor molecules with 94-99% enantioselectivity and nearly quantitative yields. These findings represent a deeper understanding of de novo synthetic encapsulation of enzyme in MOFs, thereby unfolding the great potential of enzyme@MAF catalysts for asymmetric synthesis of organics and pharmaceuticals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906037PMC
http://dx.doi.org/10.1021/acscentsci.3c01432DOI Listing

Publication Analysis

Top Keywords

asymmetric synthesis
8
synthesis
5
highly enantioselective
4
enantioselective catalysis
4
catalysis enzyme
4
enzyme encapsulated
4
encapsulated metal
4
metal azolate
4
azolate frameworks
4
frameworks micelle-controlled
4

Similar Publications

Recent Developments in Catalytic Asymmetric Aziridination.

Top Curr Chem (Cham)

September 2025

Department of Organic Chemistry I, Faculty of Pharmacy and Lascaray Research Center, University of the Basque Country (UPV/EHU), Paseo de La Universidad 7, 01006, Vitoria-Gasteiz, Spain.

Aziridines, structurally related to epoxides, are among the most challenging and fascinating heterocycles in organic chemistry due to their increasing applications in asymmetric synthesis, medicinal chemistry, and materials science. These three-membered nitrogen-containing rings serve as key intermediates in the synthesis of chiral amines, complex molecules, and pharmaceutically relevant compounds. This review provides an overview of recent progress in catalytic asymmetric aziridination, focusing on novel methodologies, an analysis of the scope and limitations of each approach, and mechanistic insights.

View Article and Find Full Text PDF

Enantioselective Construction of Fused N-Heterocycles Sequential Annulation and Catalytic Transfer Hydrogenation.

Org Lett

September 2025

Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Rd-381, Guangzhou 510641, P.R. China.

Herein, we report the first regio- and enantioselective synthesis of tetrahydropyrido[2,3-]pyrazines using a chiral iridacycle catalyst. Pyridyl diamines and diketones undergo sequential annulation and asymmetric transfer hydrogenation of the generated pyrido[2,3-]pyrazine intermediates. This method provides diverse fused N-heterocycles in high yields (up to 95%) and enantioselectivity (98.

View Article and Find Full Text PDF

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Asymmetric Mannich reaction enabled synthesis of alkaloids.

Mol Divers

September 2025

Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia.

The catalytic asymmetric Mannich reaction is a multicomponent reaction which affords β-amino carbonyl compounds by utilizing an aldehyde, a primary or secondary amine/ammonia, and a ketone. β-amino carbonyl scaffolds are crucial intermediates for the synthesis of naturally occurring bioactive compounds and their derivatives. The synthesized natural compounds exhibit a broad spectrum of biological activities including anti-fungal, anti-cancer, anti-bacterial, anti-HIV, anti-oxidant, and anti-inflammatory activities.

View Article and Find Full Text PDF

Asymmetric catalytic synthesis of chiral deuterated compounds.

Chem Commun (Camb)

September 2025

International Joint Research Centre for Molecular Science, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.

Deuterated compounds possess significant research value. As interest in chiral deuterated compounds intensifies, various deuteration methods are garnering increased attention. This article primarily reviews the asymmetric deuterium synthesis methods reported in recent years, focusing on the following strategies: one-step reductive deuteration, the series reaction of H/D exchange and asymmetric allylation, the [3+2] asymmetric cycloaddition of 1,3-dipoles and alkenes, asymmetric deuteration photocatalysis, asymmetric deuteration using organic catalysis, and asymmetric deuteration of chiral amino acids and their derivatives through biocatalysis.

View Article and Find Full Text PDF