98%
921
2 minutes
20
In the quest to scrutinize and modify biological systems, the global research community has continued to explore bio-orthogonal click reactions, a set of reactions exclusively targeting non-native molecules within biological systems. These methodologies have brought about a paradigm shift, demonstrating the feasibility of artificial chemical reactions occurring on cellular surfaces, in the cell cytosol, or within the body - an accomplishment challenging to achieve with the majority of conventional chemical reactions. This review delves into the principles of bio-orthogonal click chemistry, contrasting metal-catalyzed and metal-free reactions of bio-orthogonal nature. It comprehensively explores mechanistic details and applications, highlighting the versatility and potential of this methodology in diverse scientific contexts, from cell labelling to biosensing and polymer synthesis. Researchers globally continue to advance this powerful tool for precise and selective manipulation of biomolecules in complex biological systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10906366 | PMC |
http://dx.doi.org/10.1039/d4ra00494a | DOI Listing |
Genome Biol
September 2025
Department of Evolutionary Genetics, Max-Planck Institute for Evolutionary Biology, Plön, Germany.
Background: Most RNA-seq datasets harbor genes with extreme expression levels in some samples. Such extreme outliers are usually treated as technical errors and are removed from the data before further statistical analysis. Here we focus on the patterns of such outlier gene expression to investigate whether they provide insights into the underlying biology.
View Article and Find Full Text PDFNutr J
September 2025
Department of Life Sciences, Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, 412 96, Sweden.
Background: Avenanthramides (AVAs) and Avenacosides (AVEs) are unique to oats (Avena Sativa) and may serve as biomarkers of oat intake. However, information regarding their validity as food intake biomarkers is missing. We aimed to investigate critical validation parameters such as half-lives, dose-response, matrix effects, relative bioavailability under single dose, and in relation to the abundance of Feacalibacterium prausnitzii, and under repeated dosing, to understand the potential applications of AVAs and AVEs as biomarkers of oat intake.
View Article and Find Full Text PDFBMC Ecol Evol
September 2025
Lehrstuhl für Zoologie, TUM School of Life Sciences, Technical University of Munich, Liesel-Beckmann Strasse 4, Freising, 85354, Germany.
Accurate three-dimensional localisation of ultrasonic bat calls is essential for advancing behavioural and ecological research. I present a comprehensive, open-source simulation framework-Array WAH-for designing, evaluating, and optimising microphone arrays tailored to bioacoustic tracking. The tool incorporates biologically realistic signal generation, frequency-dependent propagation, and advanced Time Difference of Arrival (TDoA) localisation algorithms, enabling precise quantification of both positional and angular accuracy.
View Article and Find Full Text PDFMetabolomics
September 2025
Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
Introduction: Initially developed for transcriptomics data, pathway analysis (PA) methods can introduce biases when applied to metabolomics data, especially if input parameters are not chosen with care. This is particularly true for exometabolomics data, where there can be many metabolic steps between the measured exported metabolites in the profile and internal disruptions in the organism. However, evaluating PA methods experimentally is practically impossible when the sample's "true" metabolic disruption is unknown.
View Article and Find Full Text PDFTheor Appl Genet
September 2025
State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
Hybrid breeding based on male sterility requires the removal of male parents, which is time- and labor-intensive; however, the use of female sterile male parent can solve this problem. In the offspring of distant hybridization between Brassica oleracea and Brassica napus, we obtained a mutant, 5GH12-279, which not only fails to generate gynoecium (thereby causing female sterility) but also has serrated leaves that could be used as a phenotypic marker in seedling screening. Genetic analysis revealed that this trait was controlled by a single dominant gene.
View Article and Find Full Text PDF