Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this Letter, we focus on investigating the ultrafast photonics applications of two-layer HfS nanosheets. We prepared two-layer HfS nanosheets and carried out experiments to study their nonlinear saturable absorption properties. The results showed that the two-layer HfS-based saturable absorber exhibited a modulation depth of 16.8%. Additionally, we conducted theoretical calculations using first principles to estimate the structural and electronic band properties of the two-layer HfS material. Furthermore, we utilized the two-layer HfS materials as SAs in an erbium-doped fiber cavity to generate mode-locked laser pulses. We measured a repetition frequency of 8.74 MHz, a pulse duration of 540 fs, and a signal-to-noise ratio of 77 dB. Overall, our findings demonstrate that the two-layer HfS material can serve as a reliable saturable absorber, possessing properties comparable to currently used two-dimensional materials. This expands the application fields of HfS materials and highlights their potential for advanced optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.513573 | DOI Listing |