98%
921
2 minutes
20
Due to the increased crewed spaceflights in recent years, it is vital to understand how the space environment affects human health. A lack of gravitational force is known to risk multiple physiological functions of astronauts, particularly damage to the central nervous system (CNS). As innate immune cells of the CNS, microglia can transition from a quiescent state to a pathological state, releasing pro-inflammatory cytokines that contribute to neuroinflammation. There are reports indicating that microglia can be activated by simulating microgravity or exposure to galactic cosmic rays (GCR). Consequently, microglia may play a role in the development of neuroinflammation during spaceflight. Prolonged spaceflight sessions raise concerns about the chronic activation of microglia, which could give rise to various neurological disorders, posing concealed risks to the neural health of astronauts. This review summarizes the risks associated with neural health owing to microglial activation and explores the stressors that trigger microglial activation in the space environment. These stressors include GCR, microgravity, and exposure to isolation and stress. Of particular focus is the activation of microglia under microgravity conditions, along with the proposal of a potential mechanism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10902453 | PMC |
http://dx.doi.org/10.3389/fncel.2024.1296205 | DOI Listing |
J Neurochem
September 2025
Center for Neurodegeneration and Experimental Therapeutics, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA.
Microglia, the resident immune cells of the central nervous system (CNS), are involved in the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD), Dementia with Lewy Bodies (DLB), and Parkinson's disease (PD). 14-3-3 proteins act as molecular hubs to regulate protein-protein interactions, which are involved in numerous cellular functions, including cellular signaling, protein folding, and apoptosis. We previously revealed decreased 14-3-3 levels in the brains of human subjects with neurodegenerative diseases.
View Article and Find Full Text PDFSchizophr Bull
September 2025
Department of Psychiatry, Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
Background And Hypothesis: Schizophrenia is linked to hippocampal dysfunction and microglial inflammatory activation. Our prior clinical findings revealed significantly reduced transient receptor potential vanilloid 1 (TRPV1) expression in both first-episode and recurrent schizophrenia patients, with levels inversely correlating with symptom severity, implicating TRPV1 dysfunction in disease progression. Preclinical maternal separation (MS) models recapitulate schizophrenia-like behavioral and synaptic deficits, paralleled by hippocampal microglial TRPV1 downregulation.
View Article and Find Full Text PDFActa Neuropathol Commun
September 2025
Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.
Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.
View Article and Find Full Text PDFBrain Res
September 2025
Institute of Zoology, Chinese Academy of Sciences, Beijing, China. Electronic address:
The blood-brain barrier (BBB) plays a pivotal role in safeguarding and sustaining the brain's microenvironment. Disruption of this barrier is commonly observed in various neurological disorders and is intricately linked with neuroinflammation. Rutin, a natural flavonoid known for its diverse biological activities, has showed protective effects against neuroinflammation.
View Article and Find Full Text PDFJ Neuroimmunol
September 2025
Laboratory of Physiology Pharmacology and Psychopathology, Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil. Electronic address:
The mammalian target of rapamycin (mTOR) has a role in immune regulation and neuroplasticity within the brain, influencing various neurological and psychiatric disorders, including bipolar disorder. mTOR signaling, via two complexes, mTORC1 and mTORC2, modulates immune responses by regulating microglial activation, cytokine production, and T-cell function. Dysregulation of these pathways leads to neuroinflammation, a hallmark of several neurological conditions.
View Article and Find Full Text PDF