Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synaptic receptors respond to neurotransmitters by opening an ion channel across the post-synaptic membrane to elicit a cellular response. Here we use recent Torpedo acetylcholine receptor structures and functional measurements to delineate a key feature underlying allosteric communication between the agonist-binding extracellular and channel-gating transmembrane domains. Extensive mutagenesis at this inter-domain interface re-affirms a critical energetically coupled role for the principal α subunit β1-β2 and M2-M3 loops, with agonist binding re-positioning a key β1-β2 glutamate/valine to facilitate the outward motions of a conserved M2-M3 proline to open the channel gate. Notably, the analogous structures in non-α subunits adopt a locally active-like conformation in the apo state even though each L9' hydrophobic gate residue in each pore-lining M2 α-helix is closed. Agonist binding releases local conformational heterogeneity transitioning all five subunits into a conformationally symmetric open state. A release of conformational heterogeneity provides a framework for understanding allosteric communication in pentameric ligand-gated ion channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10899235PMC
http://dx.doi.org/10.1038/s41467-024-46028-xDOI Listing

Publication Analysis

Top Keywords

conformational heterogeneity
12
acetylcholine receptor
8
allosteric communication
8
agonist binding
8
release local
4
local subunit
4
subunit conformational
4
heterogeneity underlies
4
underlies gating
4
gating muscle
4

Similar Publications

How many (distinguishable) classes can we identify in single-particle analysis?

Acta Crystallogr D Struct Biol

October 2025

Centro Nacional de Biotecnologia-CSIC, Calle Darwin 3, 28049 Cantoblanco, Madrid, Spain.

Heterogeneity in cryoEM is essential for capturing the structural variability of macromolecules, reflecting their functional states and biological significance. However, estimating heterogeneity remains challenging due to particle misclassification and algorithmic biases, which can lead to reconstructions that blend distinct conformations or fail to resolve subtle differences. Furthermore, the low signal-to-noise ratio inherent in cryo-EM data makes it nearly impossible to detect minute structural changes, as noise often obscures subtle variations in macromolecular projections.

View Article and Find Full Text PDF

The analytical comparability of biologic products and their biosimilars, including higher-order structure (HOS) assessment, ensures product quality and is required for regulatory approval. In this study, nuclear magnetic resonance (NMR) spectroscopy was used to evaluate the HOS of Humira (adalimumab) and its biosimilars under normal and photo-stressed conditions. Under normal conditions, 1D and 2D NMR spectra showed strong structural similarity among all products.

View Article and Find Full Text PDF

Temperature-Resolved Crystallography Reveals Rigid-Body Dominance over Local Flexibility in B‑Factors.

ACS Omega

September 2025

Laboratório de Biotecnologia Farmacêutica (pbiotech), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil.

The crystallographic B-factor (Bf), also known as the Debye-Waller factor (DWF) or temperature factor, relates to the mean-square displacement of the atoms (X). X may be composed of individual contributions from lattice disorder (LT), static conformational heterogeneity (H) throughout the lattice, rigid body vibration (RB), local conformational vibration (V), and zero-point atomic fluctuation (A). The Bf has been widely employed as a surrogate measure of local protein flexibility, although such relation has not been confirmed.

View Article and Find Full Text PDF

Glioblastoma (GBM) remains one of the most aggressive and lethal forms of brain cancer, characterised by profound genetic, epigenetic, and phenotypic heterogeneity. Recent advancements in high-resolution genome mapping have unveiled the critical role of three-dimensional (3D) chromatin architecture-encompassing chromatin loops, topologically associating domains, and enhancer-promoter interactions-in driving GBM tumourigenesis and therapy resistance. This review summarises recent insights into the mechanistic contribution of 3D genome reorganisation in sustaining oncogenic transcriptional programs, promoting intratumoural heterogeneity, and facilitating adaptive resistance.

View Article and Find Full Text PDF

NMR insights on multidomain proteins: the case of the SARS-CoV-2 nucleoprotein.

Prog Nucl Magn Reson Spectrosc

September 2025

Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy. Electronic address:

Studying multidomain proteins, especially those combining well-folded domains with intrinsically disordered regions (IDRs), requires specific Nuclear Magnetic Resonance (NMR) techniques to address their structural complexity. To illustrate this, we focus here on the nucleocapsid protein from SARS-CoV-2, which includes both structured and disordered regions. We applied a suite of NMR methods, combining ARTINA software for automatic assignment and structure modelling with multi-receiver experiments that simultaneously capture signals from different nuclear spins, increasing both data quality and acquisition efficiency.

View Article and Find Full Text PDF