Mechanism of Efferocytosis in Determining Ischaemic Stroke Resolution-Diving into Microglia/Macrophage Functions and Therapeutic Modality.

Mol Neurobiol

Department of Pathophysiology, School of Basic Medicine, Institute of Neuroregeneration & Neurorehabilitation, Qingdao University, No. 308 Ningxia Road, Qingdao, China.

Published: October 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

After ischaemic cerebral vascular injury, efferocytosis-a process known as the efficient clearance of apoptotic cells (ACs) by various phagocytes in both physiological and pathological states-is crucial for maintaining central nervous system (CNS) homeostasis and regaining prognosis. The mechanisms of efferocytosis in ischaemic stroke and its influence on preventing inflammation progression from secondary injury were still not fully understood, despite the fact that the fundamental process of efferocytosis has been described in a series of phases, including AC recognition, phagocyte engulfment, and subsequent degradation. The genetic reprogramming of macrophages and brain-resident microglia after an ischaemic stroke has been equated by some researchers to that of the peripheral blood and brain. Based on previous studies, some molecules, such as signal transducer and activator of transcription 6 (STAT6), peroxisome proliferator-activated receptor γ (PPARG), CD300A, and sigma non-opioid intracellular receptor 1 (SIGMAR1), were discovered to be largely associated with aspects of apoptotic cell elimination and accompanying neuroinflammation, such as inflammatory cytokine release, phenotype transformation, and suppressing of antigen presentation. Exacerbated stroke outcomes are brought on by defective efferocytosis and improper modulation of pertinent signalling pathways in blood-borne macrophages and brain microglia, which also results in subsequent tissue inflammatory damage. This review focuses on recent researches which contain a number of recently discovered mechanisms, such as studies on the relationship between benign efferocytosis and the regulation of inflammation in ischaemic stroke, the roles of some risk factors in disease progression, and current immune approaches that aim to promote efferocytosis to treat some autoimmune diseases. Understanding these pathways provides insight into novel pathophysiological processes and fresh characteristics, which can be used to build cerebral ischaemia targeting techniques.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12035-024-04060-4DOI Listing

Publication Analysis

Top Keywords

ischaemic stroke
16
ischaemic
5
stroke
5
efferocytosis
5
mechanism efferocytosis
4
efferocytosis determining
4
determining ischaemic
4
stroke resolution-diving
4
resolution-diving microglia/macrophage
4
microglia/macrophage functions
4

Similar Publications

Case report: Cervical artery dissection in a patient with Turner Syndrome.

J Am Coll Health

September 2025

Department of Family Medicine (Student Health), Duke University, Durham, North Carolina, USA.

The authors describe a case of vertebral artery dissection in a patient with Turner Syndrome presenting to a university student health center. Cervical artery dissection (CeAD) is the most common cause of stroke in young adults and should be considered in patients with underlying risk factors. It usually presents with local symptoms caused by compression of adjacent nerves and their feeding vessels, as well as ischemia and hemorrhagic events.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) complicated with ischemic stroke is a major challenge to global public health and is related to poor prognosis. However, the role of blood urea nitrogen(BUN)to serum albumin ratio (BAR) in predicting in-hospital mortality of T2DM patients with ischemic stroke has not been fully explored. This study was carried out to investigate the relationship between BAR level and in-hospital mortality of T2DM patients with ischemic stroke.

View Article and Find Full Text PDF

Recent studies have shown that the glymphatic system plays a crucial role in driving hyperacute edema after ischemic stroke. This has sparked interest in understanding how this system changes in later phases of ischemic stroke. In this study, we utilized cisternal contrast-enhanced magnetic resonance imaging (CE-MRI) and immunofluorescence staining to investigate glymphatic system alterations at subacute and chronic phases of ischemic stroke.

View Article and Find Full Text PDF