Comprehensive insights into the differences of fungal communities at taxonomic and functional levels in stony coral Acropora intermedia under a natural bleaching event.

Mar Environ Res

University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China. Electronic address:

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Previous studies have reported the correlations between bacterial communities and coral bleaching, but the knowledge of fungal roles in coral bleaching is still limited. In this study, the taxonomic and functional diversities of fungi in unbleached, partly bleached and bleached stony coral Acropora intermedia were investigated through the ITS-rRNA gene next-generation sequencing. An unexpected diversity of successfully classified fungi (a total of 167 fungal genera) was revealed in this study, and the partly bleached coral samples gained the highest fungal diversity, followed by bleached and unbleached coral samples. Among these fungi, 122 genera (nearly 73.2%) were rarely found in corals in previous studies, such as Calostoma and Morchella, which gave us a more comprehensive understanding of coral-associated fungi. Positively correlated fungal genera (Calostoma, Corticium, Derxomyces, Fusicolla, Penicillium and Vishniacozyma) and negative correlated fungal genera (Blastobotrys, Exophiala and Dacryopinax) with the coral bleaching were both detected. It was found that a series of fungal genera, dominant by Apiotrichum, a source of opportunistic infections, was significantly enriched; while another fungal group majoring in Fusicolla, a probiotic fungus, was distinctly depressed in the bleached coral. It was also noteworthy that the abundance of pathogenic fungi, including Fusarium, Didymella and Trichosporon showed a rising trend; while the saprotrophic fungi, including Tricladium, Botryotrichum and Scleropezicula demostrated a declining trend as the bleaching deteriorating. The rising of pathogenic fungi and the declining of saprotrophic fungi revealed the basic rules of fungal community transitions in the coral bleaching, but the mechanism of coral-associated fungal interactions still lacks further investigation. Overall, this is an investigation focused on the differences of fungal communities at taxonomic and functional levels in stony coral A. intermedia under different bleaching statuses, which provides a better comprehension of the correlations between fungal communities and the coral bleaching.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.marenvres.2024.106419DOI Listing

Publication Analysis

Top Keywords

coral bleaching
20
fungal genera
16
fungal
12
fungal communities
12
taxonomic functional
12
stony coral
12
coral
11
differences fungal
8
communities taxonomic
8
functional levels
8

Similar Publications

Sea surface temperature of the Red Sea has increased by up to 0.45 °C per decade over the last 30 years, and coral bleaching events are becoming more frequent. A reef bleaching event was observed in October 2020, whereby some parts of the Red Sea experienced more than 12 °C-weeks.

View Article and Find Full Text PDF

Heat Stress Drives Rapid Viral and Antiviral Innate Immunity Activation in Hexacorallia.

Mol Ecol

September 2025

Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.

The class Hexacorallia, encompassing stony corals and sea anemones, plays a critical role in marine ecosystems. Coral bleaching, the disruption of the symbiosis between stony corals and zooxanthellate algae, is driven by seawater warming and further exacerbated by pathogenic microbes. However, how pathogens, especially viruses, contribute to accelerated bleaching remains poorly understood.

View Article and Find Full Text PDF

Coral reefs are threatened worldwide from unprecedented increases in ocean temperatures, resulting in corals gradually living closer to their maximum thermal threshold. With ocean temperatures expected to warm up to 3 °C by 2100, understanding the effects of chronic elevated baseline temperature is important in determining the thermal physiological limits of corals and developing realistic restoration strategies to ensure the future of coral reefs. Here, we tested the effects of 26 weeks (i.

View Article and Find Full Text PDF

The hydrocoral (fire coral) plays a critical role in reef structure and relies on a symbiotic relationship with Symbiodiniaceae algae. Environmental stressors derived from climate change, such as UV radiation and elevated temperatures, disrupt this symbiosis, leading to bleaching and threatening reef survival. To gain insight into the thermal stress response of this reef-building hydrocoral, this study investigates the proteomic response of to bleaching during the 2015-2016 El Niño event.

View Article and Find Full Text PDF

Seasonal Variation in In Hospite but Not Free-Living, Symbiodiniaceae Communities Around Hainan Island, China.

Microorganisms

August 2025

State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China.

Coral reefs are increasingly threatened by global climate change, and mass bleaching and mortality events caused by elevated seawater temperature have led to coral loss worldwide. Hainan Island hosts extensive coral reef ecosystems in China, yet seasonal variation in Symbiodiniaceae communities within this region remains insufficiently understood. We aimed to investigate the temperature-driven adaptability regulation of the symbiotic Symbiodiniaceae community in reef-building corals, focusing on the environmental adaptive changes in its community structure in coral reefs between cold (23.

View Article and Find Full Text PDF