Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: We identified a novel variant, E171Q, in a neonate with very frequent ectopy and reduced ejection fraction which normalized after arrhythmia suppression by flecainide. This clinical picture is consistent with multifocal ectopic Purkinje-related premature contractions (MEPPC). Most previous reports of MEPPC have implicated variants such as R222Q that neutralize positive charges in the S4 voltage sensor helix of the channel protein Na1.5 and generate a gating pore current.

Methods And Results: E171 is a highly conserved negatively-charged residue located in the S2 transmembrane helix of Na1.5 domain I. E171 is a key component of the Gating Charge Transfer Center, a region thought to be critical for normal movement of the S4 voltage sensor helix. We used heterologous expression, CRISPR-edited induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs), and molecular dynamics simulations to demonstrate that E171Q generates a gating pore current, which was suppressed by a low concentration of flecainide (IC50 = 0.71±0.07 µM). R222Q shifts voltage dependence of activation and inactivation in a negative direction but we observed positive shifts with E171Q. E171Q iPSC-CMs demonstrated abnormal spontaneous activity and prolonged action potentials. Molecular dynamics simulations revealed that both R222Q and E171Q proteins generate a water-filled permeation pathway that underlies generation of the gating pore current.

Conclusion: Previously identified MEPPC-associated variants that create gating pore currents are located in positively-charged residues in the S4 voltage sensor and generate negative shifts in the voltage dependence of activation and inactivation. We demonstrate that neutralizing a negatively charged S2 helix residue in the Gating Charge Transfer Center generates positive shifts but also create a gating pore pathway. These findings implicate the gating pore pathway as the primary functional and structural determinant of MEPPC and widen the spectrum of variants that are associated with gating pore-related disease in voltage-gated ion channels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10888965PMC
http://dx.doi.org/10.1101/2024.02.13.580021DOI Listing

Publication Analysis

Top Keywords

gating pore
28
voltage sensor
12
gating
10
multifocal ectopic
8
premature contractions
8
sensor helix
8
gating charge
8
charge transfer
8
transfer center
8
molecular dynamics
8

Similar Publications

Voltage-dependence gating of ion channels underlies numerous physiological and pathophysiological processes, and disruption of normal voltage gating is the cause of many channelopathies. Here, long timescale atomistic simulations were performed to directly probe voltage-induced gating transitions of the big potassium (BK) channels, where the voltage sensor domain (VSD) movement has been suggested to be distinct from that of canonical Kv channels but remains poorly understood. Using a Core-MT construct without the gating ring, multiple voltage activation transitions were observed at 750 mV, allowing detailed analysis of the activated state of BK VSD and key mechanistic features.

View Article and Find Full Text PDF

Pentameric ligand-gated ion channels control synaptic neurotransmission via an allosteric mechanism, whereby agonist binding induces global protein conformational changes that open an ion-conducting pore. For the proton-activated bacterial () ligand-gated ion channel (GLIC), high-resolution structures are available in multiple conformational states. We used a library of atomistic molecular dynamics (MD) simulations to study conformational changes and to perform dynamic network analysis to elucidate the communication pathways underlying the gating process.

View Article and Find Full Text PDF

Volume-regulated anion channels (VRACs) are large-pore channels present in nearly all vertebrate cells, playing key roles in cell volume regulation and autocrine/paracrine signaling. Here, we identify the ubiquitously expressed puromycin-sensitive aminopeptidase (PSA) as a binding partner of the obligatory VRAC subunit SWELL1 (also known as LRRC8A) and report the cryo-electron microscopy structure of the SWELL1-PSA complex. Three PSA molecules associate with a single SWELL1 hexamer, coupling adjacent leucine-rich repeat (LRR) domains into local dimers.

View Article and Find Full Text PDF

Investigating the role of the I-II linker in Nav1.5 channel function.

J Gen Physiol

November 2025

Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.

The cardiac voltage-gated sodium channel, Nav1.5, initiates the cardiac action potential. Its dysfunction can lead to dangerous arrhythmias, sudden cardiac arrest, and death.

View Article and Find Full Text PDF

The α7-nicotinic acetylcholine receptor (α7-nAChR) is a cation-selective member of the superfamily of Cys-loop receptors. Ubiquitously expressed throughout the body of vertebrate animals, this pentameric ligand-gated ion channel participates in a wide range of physiological phenomena - as diverse as synaptic transmission and the control of excessive inflammation - and is an attractive therapeutic target for novel ligands. Although notable efforts have been made to understand this receptor-channel in terms of function and structure, many questions remain unanswered despite the molecular simplicity of its homomeric assembly.

View Article and Find Full Text PDF