The Role of Natural and Synthetic Flavonoids in the Prevention of Marine Biofouling.

Mar Drugs

Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.

Published: February 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Marine biofouling is a major concern for the maritime industry, environment, and human health. Biocides which are currently used in marine coatings to prevent this phenomenon are toxic to the marine environment, and therefore a search for antifoulants with environmentally safe properties is needed. A large number of scientific papers have been published showing natural and synthetic compounds with potential to prevent the attachment of macro- and microfouling marine organisms on submerged surfaces. Flavonoids are a class of compounds which are highly present in nature, including in marine organisms, and have been found in a wide range of biological activities. Some natural and synthetic flavonoids have been evaluated over the last few years for their potential to prevent the settlement and/or the growth of marine organisms on submerged structures, thereby preventing marine biofouling. This review compiles, for the first-time, natural flavonoids as well as their synthetic analogues with attributed antifouling activity against macrofouling and microfouling marine organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10889971PMC
http://dx.doi.org/10.3390/md22020077DOI Listing

Publication Analysis

Top Keywords

marine organisms
16
natural synthetic
12
marine biofouling
12
marine
9
synthetic flavonoids
8
potential prevent
8
microfouling marine
8
organisms submerged
8
role natural
4
synthetic
4

Similar Publications

Apoptosis regulates intestinal regeneration via iPLA2 and EGFL7 signaling in .

Zool Res

September 2025

State Key Laboratory of Agricultural Products Safety, Ningbo University, Ningbo, Zhejiang 315211, China.

Apoptosis preserves organismal homeostasis by selectively eliminating unnecessary or damaged cells, with accumulating evidence also suggesting that it activates regenerative pathways and facilitates tissue remodeling. To date, however, the regulatory mechanisms linking this form of programmed cell death to regeneration remain poorly defined, particularly in evolutionarily basal organisms. Using the sea cucumber ( ) as a model for intestinal regeneration, this study identified robust apoptotic activity across key regenerative stages.

View Article and Find Full Text PDF

The rapid emergence of mineralized structures in diverse animal groups during the late Ediacaran and early Cambrian periods likely resulted from modifications of pre-adapted biomineralization genes inherited from a common ancestor. As the oldest extant phylum with mineralized structures, sponges are key to understanding animal biomineralization. Yet, the biomineralization process in sponges, particularly in forming spicules, is not well understood.

View Article and Find Full Text PDF

Microalgae and their rich nutrient content are increasingly recognized as a sustainable food source. Microalgal macular pigment (MP), composed of zeaxanthin and lutein, is densely concentrated in the retinal macula of eyes and is frequently utilized in eye health maintenance. However, as a sustainable food ingredient, the food safety and functionality of MP need further investigated.

View Article and Find Full Text PDF

Phosphorylated structural analogs of Benzalkonium Chloride-diisopropoxyphosphorylmethane (dimethyldodecylammonium) bromide 1 (phosphorylated quaternary ammonium salt) and isopropoxyphosphorylmethane (dimethylalkylammonium) 2 (phosphorylated betaine) were synthesized. The structure of compound 1 was confirmed by single crystal X-ray diffraction study. The antibacterial, antifungal, and ecotoxicological profiles of the synthesized compounds were evaluated against aquatic organisms and flowering plants.

View Article and Find Full Text PDF

Non-target metabolomic approach of the toxic effects of glyphosate in zebrafish (D. rerio).

Environ Res

September 2025

Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull (IQS-URL), Via Augusta 390, Barcelona, 08017, Spain. Electronic address:

Glyphosate (GLY) is the most widely used herbicide globally and is frequently detected in aquatic environments at low concentrations, raising concerns about its potential long-term effects on non-target organisms. However, the systemic metabolic disruptions of chronic GLY exposure in aquatic vertebrates remain poorly understood, especially at environmentally relevant concentrations. This study investigates the metabolic disruptions of GLY exposure in zebrafish (D.

View Article and Find Full Text PDF