Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Understanding the regulation of flowering time is crucial for adaptation of crops to new environment. In this study, we examined the timing of floral transition and analysed transcriptomes in leaf and shoot apical meristems of photoperiod-sensitive and -insensitive quinoa accessions. Histological analysis showed that floral transition in quinoa initiates 2-3 weeks after sowing. We found four groups of differentially expressed genes in quinoa genome that responded to plant development and floral transition: (i) 222 genes responsive to photoperiod in leaves, (ii) 1812 genes differentially expressed between accessions under long-day conditions in leaves, (iii) 57 genes responding to developmental changes under short-day conditions in leaves and (iv) 911 genes responding to floral transition within the shoot apical meristem. Interestingly, among numerous candidate genes, two putative FT orthologs together with other genes (e.g. SOC1, COL, AP1) were previously reported as key regulators of flowering time in other species. Additionally, we used coexpression networks to associate novel transcripts to a putative biological process based on the annotated genes within the same coexpression cluster. The candidate genes in this study would benefit quinoa breeding by identifying and integrating their beneficial haplotypes in crossing programs to develop adapted cultivars to diverse environmental conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1111/pce.14864DOI Listing

Publication Analysis

Top Keywords

floral transition
16
shoot apical
12
genes
9
leaf shoot
8
apical meristem
8
plant development
8
flowering time
8
differentially expressed
8
genes responding
8
candidate genes
8

Similar Publications

Identification of a carotenoid cleavage dioxygenase gene TeCCD4a regulating flower color and carotenoid content of marigold.

Gene

September 2025

National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Marigold (Tagetes erecta) serves as both an ornamental and economically significant species, owing to its diverse floral coloration and exceptionally high petal carotenoid content. Carotenoid cleavage dioxygenase (CCD), as the key enzymatic component, mediates the carotenoid degradation process. In this study, we cloned and functionally characterized a CCD4 gene to elucidate its regulatory function in petal color and carotenoid biosynthesis.

View Article and Find Full Text PDF

Vernalization reveals distinct roles of FLOWERING LOCUS T homologs in floral transition of perennial Taraxacum koksaghyz.

Plant Sci

September 2025

Institute of Plant Biology and Biotechnology, University of Muenster, Schlossplatz 8, 48143 Muenster, Germany; Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Schlossplatz 8, 48143 Muenster, Germany. Electronic address:

Flowering is a key trait in most crops and may depend on cold exposure, a process known as vernalization, but the underlying regulatory mechanisms are poorly understood. Taraxacum koksaghyz is a rubber-producing dandelion of the family Asteraceae, which also includes other economically important crops such as chicory and lettuce. Most T.

View Article and Find Full Text PDF

Fine tuning wheat development for the winter to spring transition.

Plant Commun

September 2025

School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK; Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany. Electronic address:

The coordination of floral developmental stages with the environment is important for reproductive success and the optimization of crop yields. The timing of different developmental stages contributes to final yield potential with optimal adaptation enabling development to proceed without being impacted by seasonal weather events, including frosts or end of season drought. Here we characterise the role of FLOWERING LOCUS T 3 (FT3) in hexaploid bread wheat (Triticum aestivum) during the early stages of floral development.

View Article and Find Full Text PDF

Chitinases, enzymes responsible for hydrolyzing chitin, a significant component of fungal cell walls, play a crucial role in plant defense mechanisms, growth, symbiotic relationships, and stress resistance. In this study, we identified 27 chitinase genes in chickpeas (CaChi) and classified them into five classes based on phylogenetic analysis. Overall, chitinase genes are clustered on eight chromosomes.

View Article and Find Full Text PDF

Premise: Transitions from outcrossing to selfing often drive the evolution of floral traits in a predictable way. However, these expectations are not as straightforward for mixed-mating systems. In this study, we examine variation in pollen-collecting hairs, a floral structure involved in secondary pollen presentation within Campanulaceae.

View Article and Find Full Text PDF