98%
921
2 minutes
20
Maleimide chemistry is widely used in antibody-drug conjugate (ADC) generation to connect drugs to antibodies through a succinimide linker. The resulting ADC is prone to payload loss a reverse Michael reaction, leading to premature drug release . Complete succinimide hydrolysis is an effective strategy to overcome the instability of ADC. However, we discovered through previous work that hydrolysed succinimide rings can close again in a liquid formulation during storage and under thermal stress conditions. In this work, a set of maleimide linkers with hydrolysis-prone groups were designed. The corresponding ADCs were prepared and subjected to thermal stress conditions. The extent of succinimide hydrolysis and drug release was measured, and ADC properties such as SEC, DAR, pI and clog of linkers were calculated. Our results demonstrated that even though all these groups increased the hydrolysis rate, they have different impacts on maintaining the hydrolysed succinimide ring in an open conformation and ADC stability in a liquid formulation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10880948 | PMC |
http://dx.doi.org/10.1039/d3md00569k | DOI Listing |
Int J Mol Sci
July 2025
Faculty of Pharmaceutical Sciences, Shonan University of Medical Sciences, 16-10 Kamishinano, Totsuka-ku, Yokohama 244-0806, Japan.
The deamidation rate is relatively high for Asn residues with Phe as the C-terminal adjacent residue in γS-crystallin, which is one of the human crystalline lens proteins. However, peptide-based experiments indicated that bulky amino acid residues on the C-terminal side impaired Asn deamination. In this study, we hypothesized that the side chain of Phe affects the Asn deamidation rate and investigated the succinimide formation process using quantum chemical calculations.
View Article and Find Full Text PDFNat Commun
July 2025
The Rosalind Franklin Institute, Harwell Oxfordshire, UK.
N-Hydroxysuccinimide (NHS)-ester derivatives are widely used reagents in biological chemistry and chemical biology. Their efficacy relies critically on the exclusive chemoselectivity of activated acyl over that of the imidic acyl moieties in the succinimide. Here, through systematic structural variation that modulates acyl reactivity, coupled with a statistically controlled ultra-rapid screen for unknown modifications in tandem mass spectra as well as lysine profiling across complex lysine environments, including those within proteomes containing many thousands of proteins, we reveal that ring-opening to afford N-succinamide derivatives is a present, sometimes dominant, side-reaction.
View Article and Find Full Text PDFCommun Chem
December 2024
Laboratory of Structural Chemistry and Biology, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117, Budapest, Hungary.
Under physiological conditions in peptides or proteins, the -AsnGly- motif autonomously rearranges within hours/days to β-Asp and α-Asp containing sequence, via succinimide intermedier. The formation of the succinimide is the rate-limiting step, with a strong pH and temperature dependence. We found that Arg(+) at the (n + 2) position (relative to Asn in the n position) favors isomerisation by forming a transition-state like structure, whereas Glu(-) disfavors isomerisation by adopting a β-turn like conformer.
View Article and Find Full Text PDFActa Pharm Sin B
November 2024
Institute of Pharmaceutical Analysis, College of Pharmacy/State Key Laboratory of Bioactive Molecules and Druggability Assessment/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan Universi
The dynamic tracking of antibody‒drug conjugates (ADCs) in serum is crucial. However, a versatile bioanalytical platform is lacking due to serious matrix interferences, the heterogeneity and complex biotransformation of ADCs, and the recognition deficiencies of traditional affinity technologies. To overcome this, a multiepitope recognition technology (MERT) was developed by simultaneously immobilizing CDR and non-CDR ligands onto MOF@AuNPs.
View Article and Find Full Text PDFOrg Lett
December 2024
Soft Molecular Activation Research Center (SMARC), Chiba Iodine Resource Innovation Center (CIRIC), Synthetic Organic Chemistry, Department of Chemistry, Graduate School of Science, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522, Japan.
A newly developed -9-anthranylmethyl bis(imidazolidine)pyridine (-9-Anth-PyBidine)-Cu(OAc) complex catalyzed asymmetric haloimidation reactions of alkylidenemalononitriles with -bromosuccinimide and -chlorosuccinimide, employing the succinimide moiety directly as a copper-bound nucleophile. The anthranyl substituent showed a gearing effect that produced a well-organized asymmetric sphere involving the -H proton of the imidazolidine ring in the ligand. The gearing effect afforded hydrogen bonding-assisted copper-catalyzed haloimidation reactions with high enantioselectivity.
View Article and Find Full Text PDF