Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Clinical treatment of cancer commonly incorporates X-ray radiation therapy (XRT), and developing spatially precise radiation-activatable drug delivery strategies may improve XRT efficacy while limiting off-target toxicities associated with systemically administered drugs. Nevertheless, achieving this has been challenging thus far because strategies typically rely on radical species with short lifespans, and the inherent nature of hypoxic and acidic tumor microenvironments may encourage spatially heterogeneous effects. It is hypothesized that the challenge could be bypassed by using scintillating nanoparticles that emit light upon X-ray absorption, locally forming therapeutic drug depots in tumor tissues. Thus a nanoparticle platform (Scintillating nanoparticle Drug Depot; SciDD) that enables the local release of cytotoxic payloads only after activation by XRT is developed, thereby limiting off-target toxicity. As a proof-of-principle, SciDD is used to deliver a microtubule-destabilizing payload MMAE (monomethyl auristatin E). With as little as a 2 Gy local irradiation to tumors, MMAE payloads are released effectively to kill tumor cells. XRT-mediated drug release is demonstrated in multiple mouse cancer models and showed efficacy over XRT alone (p < 0.0001). This work shows that SciDD can act as a local drug depot with spatiotemporally controlled release of cancer therapeutics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11161319 | PMC |
http://dx.doi.org/10.1002/adma.202312326 | DOI Listing |