Publications by authors named "Miles A Miller"

Extracellular vesicles (EVs) are mediators of intercellular communication through the transfer of nucleic acids, lipids and proteins between cells. This property makes bioengineered EVs promising therapeutic vectors. However, it remains challenging to isolate EVs with a therapeutic payload due to the heterogeneous nature of cargo loading into EVs.

View Article and Find Full Text PDF

Therapeutic nucleic acid delivery has many potential applications, but it remains challenging to target extrahepatic tissues in a flexible and image-guided manner. To address this issue, we report a bioorthogonal pre-targeting strategy that uses focused ultrasound to promote the delivery of mRNA-loaded lipid nanoparticles (mRNA-LNP). We synthesized amphiphilic click reactive anchors (ACRAs) consisting of a phospholipid PEG-conjugate functionalized with transcyclooctene (TCO) or its companion reactive partner methyltetrazine (mTz), yielding ACRA-TCO and ACRA-mTz.

View Article and Find Full Text PDF

Radionuclides used for imaging and therapy can show high molecular specificity in the body with appropriate targeting ligands. We hypothesized that local energy delivered by molecularly targeted radionuclides could chemically activate prodrugs at disease sites while avoiding activation in off-target sites of toxicity. As proof of principle, we tested whether this strategy of radionuclide-induced drug engagement for release (RAiDER) could locally deliver combined radiation and chemotherapy to maximize tumor cytotoxicity while minimizing off-target exposure to activated chemotherapy.

View Article and Find Full Text PDF

Sequencing of messenger RNA (mRNA) found in extracellular vesicles (EVs) in liquid biopsies can provide clinical information such as somatic mutations, resistance profiles and tumor recurrence. Despite this, EV mRNA remains underused due to its low abundance in liquid biopsies, and large sample volumes or specialized techniques for analysis are required. Here we introduce Self-amplified and CRISPR-aided Operation to Profile EVs (SCOPE), a platform for EV mRNA detection.

View Article and Find Full Text PDF

Positron emission tomography (PET) imaging methods have advanced our understanding of human biology, while targeted radiotherapeutic drug treatments are now routinely used clinically. The field is expected to grow considerably based on an expanding repertoire of available affinity ligands, radionuclides, conjugation chemistries, and their FDA approvals. With this increasing use, strategies for dose reduction have become of high interest to protect patients from unnecessary and off-target toxicity.

View Article and Find Full Text PDF

Radiotherapy is commonly used to treat cancer, and localized energy deposited by radiotherapy has the potential to chemically uncage prodrugs; however, it has been challenging to demonstrate prodrug activation that is both sustained and truly localized to tumors without affecting off-target tissues. To address this, we developed a series of novel phenyl-azide-caged, radiation-activated chemotherapy drug-conjugates alongside a computational framework for understanding corresponding pharmacokinetic and pharmacodynamic (PK/PD) behaviors. We especially focused on an albumin-bound prodrug of monomethyl auristatin E (MMAE) and found it blocked tumor growth in mice, delivered a 130-fold greater amount of activated drug to irradiated tumor versus unirradiated tissue, was 7.

View Article and Find Full Text PDF

MEK signaling pathway targeting has emerged as a valuable addition to the options available for the treatment of advanced cancers including melanoma and non-small cell lung cancer. Ophthalmologic monitoring of patients taking part in clinical trials of MEK inhibitors has shown that while ocular effects are common, generally emerging during the first days to weeks of treatment, the majority are either asymptomatic or have minimal visual impact and are benign, resolving without intervention or the need to reduce or stop MEK inhibitor therapy. However rare cases of serious, potentially vision-threatening ocular toxicities have been reported during MEK inhibitor therapy.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on improving cancer treatment by combining X-ray radiation therapy (XRT) with a new type of nanoparticle that releases drugs specifically in tumor tissues when activated by radiation, aiming to enhance treatment efficacy while reducing side effects.
  • The proposed method uses scintillating nanoparticles to create localized "drug depots" in tumors, allowing for the targeted release of a cancer-killing drug called MMAE upon exposure to XRT.
  • Testing in mouse models showed that this approach not only effectively released the drug but also outperformed XRT alone in killing tumor cells, suggesting a promising strategy for more effective cancer treatments.
View Article and Find Full Text PDF

Purpose: Oncogene-driven macropinocytosis fuels nutrient scavenging in some cancer types, yet whether this occurs in thyroid cancers with prominent MAPK-ERK and PI3K pathway mutations remains unclear. We hypothesized that understanding links between thyroid cancer signaling and macropinocytosis might uncover new therapeutic strategies.

Experimental Design: Macropinocytosis was assessed across cells derived from papillary thyroid cancer (PTC), follicular thyroid cancer (FTC), non-malignant follicular thyroid, and aggressive anaplastic thyroid cancer (ATC), by imaging fluorescent dextran and serum albumin.

View Article and Find Full Text PDF

Immune-modulating therapies impart positive outcomes in a subpopulation of cancer patients. Improved delivery strategies and non-invasive monitoring of anti-tumor effects can help enhance those outcomes and understand the mechanisms associated with the generation of anti-tumor immune responses following immunotherapy. We report on the design of a microneedle (MN) platform capable of simultaneous delivery of immune activators and collection of interstitial skin fluid (ISF) to monitor therapeutic responses.

View Article and Find Full Text PDF

Myeloid cells are abundant, create a highly immunosuppressive environment in glioblastoma (GBM), and thus contribute to poor immunotherapy responses. Based on the hypothesis that small molecules can be used to stimulate myeloid cells to elicit anti-tumor effector functions, a synthetic nanoparticle approach is developed to deliver dual NF-kB pathway-inducing agents into these cells via systemic administration. Synthetic, cyclodextrin-adjuvant nanoconstructs (CANDI) with high affinity for tumor-associated myeloid cells are dually loaded with a TLR7 and 8 (Toll-like receptor, 7 and 8) agonist (R848) and a cIAP (cellular inhibitor of apoptosis protein) inhibitor (LCL-161) to dually activate these myeloid cells.

View Article and Find Full Text PDF

Conjugation of therapeutic payloads to biologics including antibodies and albumin can enhance the selectively of drug delivery to solid tumors. However, achieving activity in tumors while avoiding healthy tissues remains a challenge, and payload activity in off-target tissues can cause toxicity for many such drug-conjugates. Here, we address this issue by presenting a drug-conjugate linker strategy that releases an active therapeutic payload upon exposure to ionizing radiation.

View Article and Find Full Text PDF

The leading cause of death in coronavirus disease 2019 (COVID-19) is severe pneumonia, with many patients developing acute respiratory distress syndrome (ARDS) and diffuse alveolar damage (DAD). Whether DAD in fatal COVID-19 is distinct from other causes of DAD remains unknown. To compare lung parenchymal and vascular alterations between patients with fatal COVID-19 pneumonia and other DAD-causing etiologies using a multidimensional approach.

View Article and Find Full Text PDF

Enabled by a plethora of new technologies, research in membrane transporters has exploded in the past decade. The goal of this state-of-the-art article is to describe recent advances in research on membrane transporters that are particularly relevant to drug discovery and development. This review covers advances in basic, translational, and clinical research that has led to an increased understanding of membrane transporters at all levels.

View Article and Find Full Text PDF

BRAF-targeted kinase inhibitors (KIs) are used to treat malignancies including BRAF-mutant non-small cell lung cancer, colorectal cancer, anaplastic thyroid cancer, and, most prominently, melanoma. However, KI selection criteria in patients remain unclear, as are pharmacokinetic/pharmacodynamic (PK/PD) mechanisms that may limit context-dependent efficacy and differentiate related drugs. To address this issue, we imaged mouse models of BRAF-mutant cancers, fluorescent KI tracers, and unlabeled drug to calibrate in silico spatial PK/PD models.

View Article and Find Full Text PDF

Cancer immunotherapies typically aim to stimulate the accumulation and activity of cytotoxic T-cells or pro-inflammatory antigen-presenting cells, reduce immunosuppressive myeloid cells or regulatory T-cells, or elicit some combination of effects thereof. Notwithstanding the encouraging results, immunotherapies such as PD-1/PD-L1-targeted immune checkpoint blockade act heterogeneously across individual patients. It remains challenging to predict and monitor individual responses, especially across multiple sites of metastasis or sites of potential toxicity.

View Article and Find Full Text PDF

The metalloprotease-disintegrin ADAM8 is critically involved in the progression of pancreatic cancer. Under malignant conditions, ADAM8 is highly expressed and could play an important role in cell-cell communication as expression has been observed in tumor and immune cells of the tumor microenvironment (TME) such as macrophages. To analyze the potential role of ADAM8 in the TME, ADAM8 knockout PDAC tumor cells were generated, and their release of extracellular vesicles (EVs) was analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Ovarian cancer is often diagnosed late, with tumors spreading throughout the abdominal cavity and ascitic fluid.
  • Confocal microscopy techniques are introduced to study ovarian cancer in its natural tissue environment using mouse models, allowing detailed imaging at the single-cell level.
  • The study demonstrates simultaneous imaging of tumor blood vessels, immunosuppressive immune cells, and ovarian cancer kinase activity to better understand the disease progression.
View Article and Find Full Text PDF

Forefront techniques for molecular interrogation of mammalian tissues, such as multiplexed tissue imaging, intravital microscopy, and single-cell RNA sequencing (scRNAseq), can combine to quantify cell-type abundance, co-localization, and global levels of receptors and their ligands. Nonetheless, it remains challenging to translate these various quantities into a more comprehensive understanding of how cell-cell communication networks dynamically operate. Therefore, construction of computational models for network-level functions - including niche-dependent actions, homeostasis, and multi-scale coordination - will be valuable for productively integrating the battery of experimental approaches.

View Article and Find Full Text PDF

Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy.

View Article and Find Full Text PDF

Radiation sensitivity varies greatly between tissues. The transcription factor p53 mediates the response to radiation; however, the abundance of p53 protein does not correlate well with the extent of radiosensitivity across tissues. Given recent studies showing that the temporal dynamics of p53 influence the fate of cultured cells in response to irradiation, we set out to determine the dynamic behavior of p53 and its impact on radiation sensitivity in vivo.

View Article and Find Full Text PDF

Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance.

View Article and Find Full Text PDF

Targeted inhibition of oncogenic pathways can be highly effective in halting the rapid growth of tumors but often leads to the emergence of slowly dividing persister cells, which constitute a reservoir for the selection of drug-resistant clones. In BRAF melanomas, RAF and MEK inhibitors efficiently block oncogenic signaling, but persister cells emerge. Here, we show that persister cells escape drug-induced cell-cycle arrest via brief, sporadic ERK pulses generated by transmembrane receptors and growth factors operating in an autocrine/paracrine manner.

View Article and Find Full Text PDF

Background Anaplastic thyroid cancer (ATC) is aggressive with a poor prognosis, partly because of the immunosuppressive microenvironment created by tumor-associated macrophages (TAMs). Purpose To understand the relationship between TAM infiltration, tumor vascularization, and corresponding drug delivery by using ferumoxytol-enhanced MRI and macrin in an ATC mouse model. Materials and Methods ATC tumors were generated in 6-8-week-old female B6129SF1/J mice through intrathyroid injection to model orthotopic tumors, or intravenously to model hematogenous metastasis, and prospectively enrolled randomly into treatment cohorts ( = 94 total; August 1, 2018, to January 15, 2020).

View Article and Find Full Text PDF

Engineered materials are ubiquitous in biomedical applications ranging from systemic drug delivery systems to orthopedic implants, and their actions unfold across multiple time- and length-scales. The efficacy and safety of biologics, nanomaterials, and macroscopic implants are all dictated by the same general principles of pharmacology as apply to small molecule drugs, comprising how the body affects materials (pharmacokinetics, PK) and conversely how materials affect the body (pharmacodynamics, PD). Imaging technologies play an increasingly insightful role in monitoring both of these processes, often simultaneously: translational macroscopic imaging modalities such as MRI and PET/CT offer whole-body quantitation of biodistribution and structural or molecular response, while ex vivo approaches and optical imaging via in vivo (intravital) microscopy reveal behaviors at subcellular resolution.

View Article and Find Full Text PDF