98%
921
2 minutes
20
The fate of organic compounds released from tire wear particle (TWP) in the aquatic environment is still poorly understood. This is especially true near sources where biotic and abiotic transformation and leaching from TWP are simultaneous and competing processes. To address this knowledge-gap an experiment was performed, allowing for biodegradation (a) during the leaching from a suspension of cryo-milled tire tread (CMTT) and (b) subsequent to leaching. Besides measuring the Dissolved Organic Carbon (DOC) content, 19 tire-related chemicals were quantified, and non-target screening was performed by LC-HRMS. The non-inoculated control experiment exhibited a DOC of up to 4 mg g, with up to 700 µg g of 1,3-diphenylguanidine (DPG) as the most prominent compound, followed by three benzothiazoles (2-mercaptobenzothiazole (2-MBT), 2-hydroxybenzothiazole (2-OHBT) and benzothiazole-2-sulfonic acid (BTSA); 50 µg g each) and 4-hydroxydiphenylamine (4-HDPA) (50 µg g). Biodegradation reduced the DOC by 88 % and the concentration of most organic compounds by more than 85 %. At the end of the experiment hexamethoxymethylmelamine (HMMM) was the most prominent single compounds (18 µg g). Non-target screening showed a more complex picture. Another 25 transformation products (TPs) of N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6-PPD) and 44 TPs and derivatives related to DPG were detected in solution, of which 11 and 28 were still present after or formed by biodegradation, respectively. Of these 39 TPs and derivatives, 31 could be detected in road runoff samples. This study provides a more comprehensive picture of the leachables of tire particles that are of environmental relevance. It also outlines that derivatives of tire additives formed during tire production and use may deserve more attention as leachables. The large extent of biodegradation of tire leachables suggests that settling ponds may be a useful treatment option for road runoff.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2024.121322 | DOI Listing |
Environ Toxicol Chem
September 2025
Univ. Savoie Mont Blanc, CNRS. EDYTEM.
The environmental impact of Tire and Road Wear Particles (TRWP), arising from tire-road friction, has raised significant concerns. Like microplastics, TRWP contaminate air, water, and soil, with considerable annual emissions and runoff into freshwater ecosystems. Among TRWP compounds, 6PPD-Q, leached from tire particles, shows varying toxicity across species, notably affecting fish and invertebrates.
View Article and Find Full Text PDFEnviron Geochem Health
September 2025
Policy Research Center for Environment and Economy, Ministry of Ecology and Environment of the People's Republic of China, Beijing, 100101, China.
The behavior of polycyclic aromatic hydrocarbons (PAHs) released from tire road wear particles (TRWPs) in human digestive fluids may pose a significant risk to human health. However, the current understanding of the release pattern and influencing factors of PAHs from TRWPs is still insufficient. In this study, the release characteristics of PAHs from UV-aging TRWPs (ATRWPs) were systematically investigated by in vitro digestive simulation experiments, release kinetic model fitting and control variable experiments.
View Article and Find Full Text PDFEnviron Pollut
September 2025
Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Lake and Watershed Science for Water Security, Nanjing Institute of Geog
Tire microplastics (TMPs) represent a major contributor to microplastic pollution, posing threats to aquatic ecosystems. As carbon-rich substrates, TMPs influence microbial colonization and ecological functions. This study investigates the impacts of pristine (P-TMPs) and scrap (S-TMPs) TMPs from the same brand on microbial communities within the tire-plastisphere.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Chemistry & Chemical Biology, McMaster University, Hamilton, Ontario L8S 4M1, Canada.
Road dust, which consists of brake and tire wear, pavement particles, crustal material, semivolatile vehicle exhaust components, and natural organic matter, can contribute to both airborne particulate matter and urban runoff. To date, research has mainly focused on the health impact of road dust, but little work has been conducted to characterize its role as a reactive surface in the environment. Our group has previously shown that illuminated road dust is a source of singlet oxygen, an important environmental oxidant.
View Article and Find Full Text PDFEnviron Sci Technol
September 2025
Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.
Atmospheric nanoplastic particles (NPPs) are an emerging environmental concern due to their potential adverse effects on human and ecosystem health. Many recently identified sources involve subjecting plastic materials to elevated temperatures; however, fundamental understanding of airborne emissions is limited. This study is the first systematic characterization of particle and volatile organic compound emissions from plastic smoldering combustion.
View Article and Find Full Text PDF