Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We present a novel method for intraoperative patient-to-image registration by learning Expected Appearances. Our method uses preoperative imaging to synthesize patient-specific expected views through a surgical microscope for a predicted range of transformations. Our method estimates the camera pose by minimizing the dissimilarity between the intraoperative 2D view through the optical microscope and the synthesized expected texture. In contrast to conventional methods, our approach transfers the processing tasks to the preoperative stage, reducing thereby the impact of low-resolution, distorted, and noisy intraoperative images, that often degrade the registration accuracy. We applied our method in the context of neuronavigation during brain surgery. We evaluated our approach on synthetic data and on retrospective data from 6 clinical cases. Our method outperformed state-of-the-art methods and achieved accuracies that met current clinical standards.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10870253PMC
http://dx.doi.org/10.1007/978-3-031-43996-4_22DOI Listing

Publication Analysis

Top Keywords

learning expected
8
expected appearances
8
method
5
intraoperative
4
appearances intraoperative
4
intraoperative registration
4
registration neurosurgery
4
neurosurgery novel
4
novel method
4
method intraoperative
4

Similar Publications

Neural correlates of Bayesian social belief updating in the medial prefrontal cortex.

Cereb Cortex

August 2025

Department of Developmental Psychology, University of Amsterdam, Nieuwe Achtergracht 129b, 1018 WS Amsterdam, The Netherlands.

Social learning, a hallmark of human behavior, entails integrating other's actions or ideas with one's own. While it can accelerate the learning process by circumventing slow and costly individual trial-and-error learning, its effectiveness depends on knowing when and whose information to use. In this study, we explored how individuals use social information based on their own and others' levels of uncertainty.

View Article and Find Full Text PDF

Robotic surgery has transformed the field of surgery, offering enhanced precision, minimal invasiveness, and improved patient outcomes. This narrative review explores the multifaceted aspects of robotic surgery, examining the challenges, recent advances, and future prospects for its integration into healthcare. Our comprehensive analysis of 48 studies reveals significant geographic disparities in robotic surgery research and implementation, with 68.

View Article and Find Full Text PDF

Predicting ordinal responses such as school grades or rating scale data is a common task in the social and life sciences. Currently, two major streams of methodology exist for ordinal prediction: traditional statistical models such as the proportional odds model and machine learning (ML) methods such as random forest (RF) adapted to ordinal prediction. While methods from the latter stream have displayed high predictive performance, particularly for data characterized by non-linear effects, most of these methods do not support hierarchical data.

View Article and Find Full Text PDF

With the continuous development of flexible sensors and flexible energy storage devices, gel materials with good flexibility, toughness, and tunable properties have attracted wide attention. Deep eutectic solvents (DES) have an obvious advantage of thermal and chemical stability over water. Therefore, eutectogels can effectively solve the problem of insufficient stability of traditional hydrogels.

View Article and Find Full Text PDF

This paper demonstrates how optimal policy learning can inform the targeted allocation of Indonesia's two subsidized health insurance programmes. Using national survey data, we develop policy rules aimed at minimizing "catastrophic health expenditure" among enrollees of APBD or APBN, the two government-funded schemes. Employing a super learner ensemble approach, we use regression and machine learning methods of varying complexity to estimate conditional average treatment effects and construct policy rules to optimize program benefits, both with and without budget constraints.

View Article and Find Full Text PDF