98%
921
2 minutes
20
Mine reclamation historically focuses on enhancing plant coverage to improve below and aboveground ecology. However, there is a great need to study the role of soil microorganisms in mine reclamation, particularly long-term studies that track the succession of microbial communities. Here, we investigate the trajectory of microbial communities of mining sites reclaimed between three and 26 years. We used high-throughput amplicon sequencing to characterize the bacterial and fungal communities. We quantified how similar the reclaimed sites were to unmined, undisturbed reference sites and explored the trajectory of microbial communities along the reclamation chronosequence. We also examined the ecological processes that shape the assembly of bacterial communities. Finally, we investigated the functional potential of the microbial communities through metagenomic sequencing. Our results reveal that the reclamation age significantly impacted the community compositions of bacterial and fungal communities. As the reclamation age increases, bacterial and fungal communities become similar to the unmined, undisturbed reference site, suggesting a favorable succession in microbial communities. The bacterial community assembly was also significantly impacted by reclamation age and was primarily driven by stochastic processes, indicating a lesser influence of environmental properties on the bacterial community. Furthermore, our read-based metagenomic analysis showed that the microbial communities' functional potential increasingly became similar to the reference sites. Additionally, we found that the plant richness increased with the reclamation age. Overall, our study shows that both above- and belowground ecological properties of reclaimed mine sites trend towards undisturbed sites with increasing reclamation age. Further, it demonstrates the importance of microbial genomics in tracking the trajectory of ecosystem reclamation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.170996 | DOI Listing |
Genome Biol
September 2025
Institute of Translational Medicine, Zhejiang University School of Medicine, Zhejiang, Hangzhou, 310029, China.
Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.
View Article and Find Full Text PDFFolia Microbiol (Praha)
September 2025
Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China.
Microbiome dysbiosis in reflux esophagitis has been extensively studied. However, limited research has examined microbiota across different segments of the upper gastrointestinal tract in reflux esophagitis. In this study, we investigated microbial alterations in three esophageal segments (upper, middle, and lower) and the gastric fundus of reflux esophagitis patients and healthy controls.
View Article and Find Full Text PDFNat Cancer
September 2025
Nature Cancer, .
NPJ Biofilms Microbiomes
September 2025
Imperial College Parturition Research Group, Institute of Reproductive and Developmental Biology, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK.
The mechanisms by which vaginal microbiota shape spontaneous preterm birth (sPTB) risk remain poorly defined. Using electronic clinical records data from 74,913 maternities in conjunction with metaxanomic (n = 596) and immune profiling (n = 314) data, we show that the B blood group phenotype associates with increased risk of sPTB and adverse vaginal microbiota composition. The O blood group associates with sPTB in women who have a combination of a previous history of sPTB, an adverse vaginal microbial composition and pro-inflammatory cervicovaginal milieu.
View Article and Find Full Text PDFMicrobes Environ
September 2025
Sustainable Process Engineering Center, Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya.
Nitrifying communities in activated sludge play a crucial role in biological nitrogen removal processes in municipal wastewater treatment plants. While extensive research has been conducted in temperate regions, limited information is available on nitrifiers in tropical regions. The present study investigated all currently known nitrifying communities in two full-scale municipal wastewater treatment plants in Malaysia operated under low-dissolved oxygen (DO) (0.
View Article and Find Full Text PDF