A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability. | LitMetric

Stronger compensatory thermal adaptation of soil microbial respiration with higher substrate availability.

ISME J

Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, Northeast Normal University, Changchun, Jilin, 130024, China.

Published: January 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ongoing global warming is expected to augment soil respiration by increasing the microbial activity, driving self-reinforcing feedback to climate change. However, the compensatory thermal adaptation of soil microorganisms and substrate depletion may weaken the effects of rising temperature on soil respiration. To test this hypothesis, we collected soils along a large-scale forest transect in eastern China spanning a natural temperature gradient, and we incubated the soils at different temperatures with or without substrate addition. We combined the exponential thermal response function and a data-driven model to study the interaction effect of thermal adaptation and substrate availability on microbial respiration and compared our results to those from two additional continental and global independent datasets. Modeled results suggested that the effect of thermal adaptation on microbial respiration was greater in areas with higher mean annual temperatures, which is consistent with the compensatory response to warming. In addition, the effect of thermal adaptation on microbial respiration was greater under substrate addition than under substrate depletion, which was also true for the independent datasets reanalyzed using our approach. Our results indicate that thermal adaptation in warmer regions could exert a more pronounced negative impact on microbial respiration when the substrate availability is abundant. These findings improve the body of knowledge on how substrate availability influences the soil microbial community-temperature interactions, which could improve estimates of projected soil carbon losses to the atmosphere through respiration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10945366PMC
http://dx.doi.org/10.1093/ismejo/wrae025DOI Listing

Publication Analysis

Top Keywords

thermal adaptation
24
microbial respiration
20
substrate availability
16
compensatory thermal
8
adaptation soil
8
soil microbial
8
respiration
8
substrate
8
soil respiration
8
substrate depletion
8

Similar Publications