98%
921
2 minutes
20
Traumatic brain injury (TBI) is the leading cause of death in young people and can cause cognitive and motor dysfunction and disruptions in functional connectivity between brain regions. In human TBI patients and rodent models of TBI, functional connectivity is decreased after injury. Recovery of connectivity after TBI is associated with improved cognition and memory, suggesting an important link between connectivity and functional outcome. We examined widespread alterations in functional connectivity following TBI using simultaneous widefield mesoscale GCaMP7c calcium imaging and electrocorticography (ECoG) in mice injured using the controlled cortical impact (CCI) model of TBI. Combining CCI with widefield cortical imaging provides us with unprecedented access to characterize network connectivity changes throughout the entire injured cortex over time. Our data demonstrate that CCI profoundly disrupts functional connectivity immediately after injury, followed by partial recovery over 3 weeks. Examining discrete periods of locomotion and stillness reveals that CCI alters functional connectivity and reduces theta power only during periods of behavioral stillness. Together, these findings demonstrate that TBI causes dynamic, behavioral state-dependent changes in functional connectivity and ECoG activity across the cortex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11486687 | PMC |
http://dx.doi.org/10.1093/cercor/bhae038 | DOI Listing |
J Econ Entomol
September 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The ability of parasitoid wasps to precisely locate hosts in complex environments is a key factor in suppressing pest populations. Chemical communication plays an essential role in mediating insect behaviors such as locating food sources, hosts, and mates. Odorant receptors (ORs) are the key connection between external odors and olfactory nerves.
View Article and Find Full Text PDFBrain
September 2025
Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, 13005 Marseille, France.
The lateral prefrontal cortex (LPFC) serves as a critical hub for higher-order cognitive and executive functions in the human brain, coordinating brain networks whose disruption has been implicated in many neurological and psychiatric disorders. While transcranial brain stimulation treatments often target the LPFC, our current understanding of connectivity profiles guiding these interventions based on electrophysiology remains limited. Here, we present a high-resolution probabilistic map of bidirectional effective connectivity between the LPFC and widespread cortical and subcortical regions.
View Article and Find Full Text PDFClin Transplant
September 2025
Avera Medical Group Transplant & Liver Surgery, Avera McKennan Hospital & University Health Center, Sioux Falls, South Dakota, USA.
Background: In the United States, a severe organ shortage precipitates an extensive transplant waitlist. Living donor kidneys are functionally superior to those from deceased donors and offer an alternative to close the supply-demand gap.
Methods: A retrospective review of 2147 patients who self-referred to begin the living kidney donation workup process at our center between June 1, 2012, and October 1, 2023 was conducted with subsequent statistical analysis of gathered data.
Elife
September 2025
Department of Biology, University of Copenhagen, Copenhagen, Denmark.
Sickness-induced sleep is a behavior conserved across species that promotes recovery from illness, yet the underlying mechanisms are poorly understood. Here, we show that interleukin-6-like cytokine signaling from the gut to brain glial cells regulates sleep. Under healthy conditions, this pathway promotes wakefulness.
View Article and Find Full Text PDFJ Appl Physiol (1985)
September 2025
Ludwig Engel Centre for Respiratory Research, Westmead Hospital, Sydney, NSW, Australia.
Lung volume change modifies pharyngeal airway patency by altering breathing-related passive force transmission between lower and upper airways (via tracheal and other connections). We hypothesise that such force transmission may also impact active upper airway dilator muscle function by altering resting muscle length. The aim of this study was to determine the relationship between end expiratory lung volume (EELV) and ability of sternohyoid muscle (SH) contraction to alter pharyngeal airway patency.
View Article and Find Full Text PDF