Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cardiac allograft rejection is the leading cause of early graft failure and is a major focus of postheart transplant patient care. While histological grading of endomyocardial biopsy samples remains the diagnostic standard for acute rejection, this standard has limited diagnostic accuracy. Discordance between biopsy rejection grade and patient clinical trajectory frequently leads to both overtreatment of indolent processes and delayed treatment of aggressive ones, spurring the need to investigate the adequacy of the current histological criteria for assessing clinically important rejection outcomes.

Methods: N=2900 endomyocardial biopsy images were assigned a rejection grade label (high versus low grade) and a clinical trajectory label (evident versus silent rejection). Using an image analysis approach, n=370 quantitative morphology features describing the lymphocytes and stroma were extracted from each slide. Two models were constructed to compare the subset of features associated with rejection grades versus those associated with clinical trajectories. A proof-of-principle machine learning pipeline-the cardiac allograft rejection evaluator-was then developed to test the feasibility of identifying the clinical severity of a rejection event.

Results: The histopathologic findings associated with conventional rejection grades differ substantially from those associated with clinically evident allograft injury. Quantitative assessment of a small set of well-defined morphological features can be leveraged to more accurately reflect the severity of rejection compared with that achieved by the International Society of Heart and Lung Transplantation grades.

Conclusions: Conventional endomyocardial samples contain morphological information that enables accurate identification of clinically evident rejection events, and this information is incompletely captured by the current, guideline-endorsed, rejection grading criteria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10940208PMC
http://dx.doi.org/10.1161/CIRCHEARTFAILURE.123.010950DOI Listing

Publication Analysis

Top Keywords

rejection
15
cardiac allograft
12
allograft rejection
12
rejection grading
8
grading criteria
8
endomyocardial biopsy
8
rejection grade
8
clinical trajectory
8
rejection grades
8
severity rejection
8

Similar Publications

Eplet mismatch analysis in kidney transplantation: from concept to clinical practice.

Clin Transplant Res

September 2025

Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea.

Eplet mismatch analysis offers a refined approach to assessing donor-recipient compatibility in kidney transplantation, surpassing conventional antigen-level human leukocyte antigen (HLA) matching in predicting immunologic outcomes. By identifying polymorphic amino acid residues on HLA molecules recognized by B cell receptors, this method quantifies immunologic risk. Clinical studies demonstrate that high eplet mismatch loads, particularly at HLA-DQ, are strongly associated with donor-specific antibody development, antibody-mediated rejection, and reduced graft survival.

View Article and Find Full Text PDF

Introduction: Liver transplantation is associated with various metabolic disorders. Peri-transplant hyperglycemia is among the most frequent metabolic disorders among liver transplant recipients. Hyperglycemia following liver transplantation can increase the risk of post-transplant complications, potentially impacting both graft and recipient outcomes.

View Article and Find Full Text PDF

Multi-arm rock drilling robots frequently encounter challenges in extreme environments, such as tunnels, where they are subjected to high-frequency impact loads, multi-degree-of-freedom motion coupling, and large-range motion control vibrations. First, we propose a collision-free path planning method that combines an improved genetic algorithm (IGA) and an improved artificial potential field method. This method is based on the kinematic model of the rock drilling robot.

View Article and Find Full Text PDF

Timely diagnosing and monitoring of primary graft dysfunction is pivotal for heart transplant patient surveillance. Transthoracic echocardiography is the primary noninvasive method for follow-up of heart transplant recipients, which provides comprehensive information on cardiac morphology and function. It is a sensitive tool in diagnosing rejection, helping to improve therapeutic approaches for this condition, and monitoring cardiac function during therapy.

View Article and Find Full Text PDF

Room-temperature crystallization of a cobalt-aminoterephthalate framework (CoBDC-NH) directly on 3D-printed polylactic acid (PLA) yields a super-wetting membrane that reconciles permeability and selectivity in oil-water separation. The ambient-pressure route dispenses with conventional hydrothermal steps and preserves the PLA architecture. Molecular dynamics (MD) combined with density-functional (DFT) calculations reveal that NaOH activation exposes carboxylate sites, while trace polyvinylpyrrolidone amplifies van der Waals forces, uniformly dispersing Co nuclei and anchoring the metal-organic framework (MOF) layer.

View Article and Find Full Text PDF