98%
921
2 minutes
20
Unlabelled: With the improvement of high-throughput technologies in recent years, large multi-dimensional plant omics data have been produced, and big-data-driven yield prediction research has received increasing attention. Machine learning offers promising computational and analytical solutions to interpret the biological meaning of large amounts of data in crops. In this study, we utilized multi-omics datasets from 156 maize recombinant inbred lines, containing 2496 single nucleotide polymorphisms (SNPs), 46 image traits (i-traits) from 16 developmental stages obtained through an automatic phenotyping platform, and 133 primary metabolites. Based on benchmark tests with different types of prediction models, some machine learning methods, such as Partial Least Squares (PLS), Random Forest (RF), and Gaussian process with Radial basis function kernel (GaussprRadial), achieved better prediction for maize yield, albeit slight difference for method preferences among i-traits, genomic, and metabolic data. We found that better yield prediction may be caused by various capabilities in ranking and filtering data features, which is found to be linked with biological meaning such as photosynthesis-related or kernel development-related regulations. Finally, by integrating multiple omics data with the RF machine learning approach, we can further improve the prediction accuracy of grain yield from 0.32 to 0.43. Our research provides new ideas for the application of plant omics data and artificial intelligence approaches to facilitate crop genetic improvements.
Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01454-z.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10853138 | PMC |
http://dx.doi.org/10.1007/s11032-024-01454-z | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Nephrol
September 2025
School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFOdontology
September 2025
Department of Periodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
Orthodontic-induced gingival enlargement (OIGE) affects approximately 15-30% of patients undergoing orthodontic treatment and remains largely unpredictable, often relying on subjective clinical assessments made after irreversible tissue changes have occurred. S100A4 is a well-characterized marker of activated fibroblasts involved in pathological tissue remodeling. This was a cross-sectional precision biomarker study that analyzed gingival tissue samples from three groups: healthy controls (n = 60), orthodontic patients without gingival enlargement (n = 31), and patients with clinically diagnosed OIGE (n = 61).
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.