98%
921
2 minutes
20
To assess the blending effect of field snails with grass carp muscle, the effects of paramyosin (PM) and actomyosin (AM) with different mixture ratios on the gel properties of the binary blend system were investigated in our work. The purified PM from field snail muscle was about 95 kDa on SDS-PAGE. Its main secondary structure was α-helix, which reached to 97.97 %. When the amount of PM increased in the binary blend system, their rheological indices and gel strength were improved. The water holding capacity (WHC) increased to 86.30 % at a mixture ratio of 2:8. However, the WHC and the area of immobile water (P) dramatically decreased, and the area of free water (P) increased when the mixture ratio exceeded 4:6. The low level of PM in binary blend system promoted the formation of a homogenous and dense gel network through non-covalent interactions as observed results of SEM and FTIR. When there were redundant PM molecules, the development of heterostructure via hydrophobic interaction of tail-tail contributed to the reduced gel properties of the binary blend system. These findings provided new insight into the binary blend system of PM and AM with different ratios to change the gel properties of myofibrillar protein.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.130097 | DOI Listing |
Food Res Int
November 2025
Food Technology and Nutrition, School of Science, RMIT University, Melbourne 3083, VIC, Australia.
The interactions between ethylcellulose (EC) and waxes in multicomponent oleogel systems are underexplored. This study investigated the structural, functional, and physiochemical properties of rice bran oil (RBO) oleogels structured with various ratios of EC and a binary wax blend (9:1 beeswax (BW): carnauba wax (CRW)), varied in 0.5 % w/w increments at a constant total gelator concentration of 4 % w/w.
View Article and Find Full Text PDFFront Artif Intell
August 2025
School of Electronics Engineering (SENSE), Vellore Institute of Technology, Chennai, India.
Introduction: In recent years, Deep Learning (DL) architectures such as Convolutional Neural Network (CNN) and its variants have been shown to be effective in the diagnosis of cardiovascular disease from ElectroCardioGram (ECG) signals. In the case of ECG as a one-dimensional signal, 1-D CNNs are deployed, whereas in the case of a 2D-represented ECG signal, i.e.
View Article and Find Full Text PDFSmall Methods
September 2025
Key Laboratory of Advanced Materials Chemistry and Devices (AMCDLab) of the Department of Education of Inner Mongolia Autonomous Region, College of Chemistry and Environment Science, Inner Mongolia Normal University, Hohhot, 010022, China.
Photovoltaic performance of bulkheterojunction (BHJ)-based organic solar cells is critically governed by morphologies of donor:acceptor blends as light-harvesting layers. However, ideal morphological control remains challenging due to the systems' complexity. In this work, a sequential dual-heating (DH) strategy is presented to precisely tailor the BHJ morphology in a D18-Cl:Y6 system, achieving a remarkable 19.
View Article and Find Full Text PDFACS Omega
August 2025
Chemical and Materials Engineering Department, Pigman College of Engineering, University of Kentucky, Lexington, Kentucky 40506, United States.
The upper critical solution temperature (UCST) of binary polymer-solvent blends can create porous structures for many applications, including filtration. This study investigates how UCST can be tuned in a non-aqueous system of polystyrene and terpineol. The addition of small molecules, γ-valerolactone, oleic acid, and limonene, was tested to modify the terpineol-polystyrene phase separation temperature.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China.
Halogenation emerges as a key strategy to enhance the performance of organic solar cells (OSCs) by tuning molecular packing, energy levels, and charge dynamics. Here, we report three new benzo[a]phenazine-core small-molecule acceptors, namely NA5, NA6, and NA7, and systematically evaluate their photovoltaic properties in o-xylene-processed binary and ternary OSCs. Halogenation significantly strengthens intermolecular interactions, improves charge carrier mobility, and facilitates exciton dissociation, leading to a remarkable increase in binary device efficiencies from ∼2% (NA5) to over 17% (NA6, NA7).
View Article and Find Full Text PDF