Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Considering the importance of sustainable nuclear energy, effective management of radioactive nuclear waste, such as sequestration of radioiodine has inflicted a significant research attention in recent years. Despite the fact that materials have been reported for the adsorption of iodine, development of effective adsorbent with significantly improved segregation properties for widespread practical applications still remain exceedingly difficult due to lack of proper design strategies. Herein, utilizing unique hybridization synthetic strategy, a composite crystalline aerogel material has been fabricated by covalent stepping of an amino-functionalized stable cationic discrete metal-organic polyhedra with dual-pore containing imine-functionalized covalent organic framework. The ultralight hybrid composite exhibits large surface area with hierarchical macro-micro porosity and multifunctional binding sites, which collectively interact with iodine. The developed nano-adsorbent demonstrate ultrahigh vapor and aqueous-phase iodine adsorption capacities of 9.98 g.g and 4.74 g.g, respectively, in static conditions with fast adsorption kinetics, high retention efficiency, reusability and recovery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858966PMC
http://dx.doi.org/10.1038/s41467-024-45581-9DOI Listing

Publication Analysis

Top Keywords

hybrid composite
8
sequestration radioiodine
8
ultralight crystalline
4
crystalline hybrid
4
composite material
4
material highly
4
highly efficient
4
efficient sequestration
4
radioiodine considering
4
considering sustainable
4

Similar Publications

Colloidal gold technology in viral diagnostics: Recent innovations, clinical applications, and future perspectives.

Virology

September 2025

Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang, China. Electronic address:

Colloidal gold technology has revolutionized viral diagnostics through its rapid, cost-effective, and user-friendly applications, particularly in point-of-care testing (POCT). This review synthesizes recent advancements, focusing on its role in detecting respiratory viruses, hepatitis viruses, and emerging pathogens. The technology leverages the unique optical and physicochemical properties of gold nanoparticles (AuNPs), including localized surface plasmon resonance (LSPR) and high surface-to-volume ratios, to achieve rapid antigen-antibody recognition with visual readouts within 15 min.

View Article and Find Full Text PDF

The rapid increase in population has driven the demand for fossil fuel energy, contributing to increased carbon emissions that ultimately accelerate global warming and climate change. Battery storage systems have many advantages over conventional energy sources. However, they face limitations such as energy storage, cost, and environmental hazards that come with the use of chemical binders.

View Article and Find Full Text PDF

sp. nov., a novel halotolerant, flexirubin-type pigment-producing bacterium of the family .

Int J Syst Evol Microbiol

September 2025

Second Institute of Oceanography, Key Laboratory of Marine Ecosystem Dynamics, Ministry of Natural Resources, Hangzhou 310018, PR China.

A Gram-staining-negative, non-motile, aerobic, rod-shaped bacterium, designated 14752, was isolated from a saline lake in Xinjiang Uygur Autonomous Region, China. The strain was subjected to a taxonomic study using a polyphasic approach. Strain 14752 was able to grow at 4-40 ℃ (optimum 28 ℃), pH 6.

View Article and Find Full Text PDF

Niabella insulamsoli sp. nov., Isolated From Soil and Showing Potential Cosmetic Functions with Flexirubin Extract.

Curr Microbiol

September 2025

Microbiology Laboratory, Department of Life Science, Kyonggi University, Suwon, Gyeonggi-Do, Republic of Korea.

A yellow-pigmented, non-motile, rod-shaped, and Gram-stain-negative bacterium was isolated from the soil of Yeongheung Island, Korea. The novel isolate, strain N803, was strictly aerobic, grew optimally at 30-35 °C, at pH 6.5, and in the presence of 0-2% NaCl.

View Article and Find Full Text PDF

Perovskite materials have revolutionized optoelectronics by virtue of their tunable bandgaps, exceptional optoelectronic properties, and structural flexibility. Notably, the state-of-the-art performance of perovskite solar cells has reached 27%, making perovskite materials a promising candidate for next-generation photovoltaic technology. Although numerous reviews regarding perovskite materials have been published, the existing reviews generally focus on individual material systems (e.

View Article and Find Full Text PDF