Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rice effective panicle is a major trait for grain yield and is affected by both the genetic tiller numbers and the early tillering vigor (ETV) traits to survive environmental adversities. The mechanism behind tiller bud formation has been well described, while the genes and the molecular mechanism underlying rice-regulating ETV traits are unclear. In this study, the candidate genes in regulating ETV traits have been sought by quantitative trait locus (QTL) mapping and bulk-segregation analysis by resequencing method (BSA-seq) conjoint analysis using rice backcross inbred line (BIL) populations, which were cultivated as late-season rice of double-cropping rice systems. By QTL mapping, seven QTLs were detected on chromosomes 1, 3, 4, and 9, with the logarithm of the odds (LOD) values ranging from 3.52 to 7.57 and explained 3.23% to 12.98% of the observed phenotypic variance. By BSA-seq analysis, seven QTLs on chromosomes 1, 2, 4, 5, 7, and 9 were identified using single-nucleotide polymorphism (SNP) and insertions/deletions (InDel) index algorithm and Euclidean distance (ED) algorithm. The overlapping QTL resulting from QTL mapping and BSA-seq analysis was shown in a 1.39 Mb interval on chromosome 4. In the overlap interval, six genes, including the functional unknown genes , , , and ethylene-insensitive 3 (), sialyltransferase family domain containing protein (), and ATOZI1 (), showed the differential expression between ETV rice lines and late tillering vigor (LTV) rice lines and have a missense base mutation in the genomic DNA sequences of the parents. We speculate that the six genes are the candidate genes regulating the ETV trait in rice, which provides a research basis for revealing the molecular mechanism behind the ETV traits in rice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10855346PMC
http://dx.doi.org/10.3390/ijms25031497DOI Listing

Publication Analysis

Top Keywords

etv traits
16
candidate genes
12
genes regulating
12
tillering vigor
12
qtl mapping
12
rice
9
early tillering
8
late-season rice
8
rice double-cropping
8
molecular mechanism
8

Similar Publications

Rice effective panicle is a major trait for grain yield and is affected by both the genetic tiller numbers and the early tillering vigor (ETV) traits to survive environmental adversities. The mechanism behind tiller bud formation has been well described, while the genes and the molecular mechanism underlying rice-regulating ETV traits are unclear. In this study, the candidate genes in regulating ETV traits have been sought by quantitative trait locus (QTL) mapping and bulk-segregation analysis by resequencing method (BSA-seq) conjoint analysis using rice backcross inbred line (BIL) populations, which were cultivated as late-season rice of double-cropping rice systems.

View Article and Find Full Text PDF

Childhood obesity is a public health problem, which is associated with a long-term increased risk of cardiovascular disease and premature mortality. Several gene variants have previously been identified that have provided novel insights into biological factors that contribute to the development of obesity. As obesity tracks through childhood into adulthood, identification of the genetic factors for obesity in early life is important.

View Article and Find Full Text PDF