Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: We aim to independently validate the prognostic utility of the combined cell-cycle risk (CCR) multimodality threshold to estimate risk of early metastasis after definitive treatment of prostate cancer and compare this prognostic ability with other validated biomarkers.

Methods: Patients diagnosed with localized prostate cancer were enrolled into a single-institutional registry for the prospective observational cohort study. The primary end point was risk of metastasis within 3 years of diagnostic biopsy. Secondary end points included time to definitive treatment, time to subsequent therapy, and metastasis after completion of initial definitive treatment. Multivariable cause-specific Cox proportional hazards regression models were produced accounting for competing risk of death and stratified on the basis of the CCR active surveillance and multimodality (MM) thresholds. Time-dependent areas under the receiver operating characteristic curve were calculated.

Results: The cohort consisted of 554 men with prostate cancer and available CCR score from biopsy. The CCR score was prognostic for metastasis (hazard ratio [HR], 2.32 [95% CI, 1.17 to 4.59]; = .02), with scores above the MM threshold having a higher risk than those below the threshold (HR, 5.44 [95% CI, 2.72 to 10.91]; < .001). The AUC for 3-year risk of metastasis on the basis of CCR was 0.736. When men with CCR above the MM threshold received MM therapy, their 3-year risk of metastasis was significantly lower than those receiving single-modality therapy (3% 14%). Similarly, a CCR score above the active surveillance threshold portended a faster time to first definitive treatment.

Conclusion: CCR outperforms other commonly used biomarkers for prediction of early metastasis. We illustrate the clinical utility of the CCR active surveillance and multimodality thresholds. Molecular genomic tests can inform patient selection and personalization of treatment for localized prostate cancer.

Download full-text PDF

Source
http://dx.doi.org/10.1200/PO.23.00364DOI Listing

Publication Analysis

Top Keywords

prostate cancer
20
definitive treatment
12
risk metastasis
12
active surveillance
12
ccr score
12
risk
9
ccr
9
cell-cycle risk
8
metastasis
8
early metastasis
8

Similar Publications

Importance: Multiparametric magnetic resonance imaging (MRI), with or without prostate biopsy, has become the standard of care for diagnosing clinically significant prostate cancer. Resource capacity limits widespread adoption. Biparametric MRI, which omits the gadolinium contrast sequence, is a shorter and cheaper alternative offering time-saving capacity gains for health systems globally.

View Article and Find Full Text PDF

Objective: This study aims to systematically evaluate the inter- and intra-observer agreement regarding lesions with uncertain malignancy potential in Ga-68 PSMA PET/CT imaging of prostate cancer patients, utilizing the PSMA-RADS 2.0 classification system, and to emphasize the malignancy evidence associated with these lesions.

Methods: We retrospectively reviewed Ga-68 PSMA PET/CT images of patients diagnosed with prostate cancer via histopathology between December 2016 and November 2023.

View Article and Find Full Text PDF

Influence of life expectancy on shared decision-making for prostate cancer screening.

Cancer Causes Control

September 2025

Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA.

Purpose: The U.S. Preventive Services Task Force recommends that men aged 55-69 years undergo shared decision-making (SDM) regarding prostate cancer (PCa) screening, and routine screening is not recommended for older men or those with limited life expectancy.

View Article and Find Full Text PDF

Oligomeric proanthocyanidins (OPCs), condensed tannins found plentiful in grape seeds and berries, have higher bioavailability and therapeutic benefits due to their low degree of polymerization. Recent evidence places OPCs as effective modulators of cancer stem cell (CSC) plasticity and tumor growth. Mechanistically, OPCs orchestrate multi-pathway inhibition by destabilizing Wnt/β-catenin, Notch, PI3K/Akt/mTOR, JAK/STAT3, and Hedgehog pathways, triggering β-catenin degradation, silencing stemness regulators (OCT4, NANOG, SOX2), and stimulating tumor-suppressive microRNAs (miR-200, miR-34a).

View Article and Find Full Text PDF