Anion-Involved Solvation Structure of Lithium Polysulfides in Lithium-Sulfur Batteries.

Angew Chem Int Ed Engl

Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, 100084, Beijing, China.

Published: May 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Lithium polysulfides (LiPSs) are pivotal intermediates involved in all the cathodic reactions in lithium-sulfur (Li-S) batteries. Elucidating the solvation structure of LiPSs is the first step for rational design of electrolyte and improving Li-S battery performances. Herein, we investigate the solvation structure of LiPSs and find that Li salt anions tend to enter the first solvation sheath of LiPSs and form contact ion pairs in electrolyte. The anion-involved solvation structure of LiPSs significantly influences the intrinsic kinetics of the sulfur redox reactions. In particular, the LiPS solvation structure modified by lithium bis(fluorosulfonyl)imide endows Li-S batteries with reduced polarization and enhanced rate performances under high sulfur areal loading and lean electrolyte volume conditions. This work updates the fundamental understanding of the solvation chemistry of LiPSs and highlights electrolyte engineering for promoting the performances of Li-S batteries.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202400343DOI Listing

Publication Analysis

Top Keywords

solvation structure
20
li-s batteries
12
structure lipss
12
anion-involved solvation
8
lithium polysulfides
8
lipss
6
solvation
6
structure
5
structure lithium
4
polysulfides lithium-sulfur
4

Similar Publications

Ultrasound-assisted extraction of naringin from Exocarpium Citri Grandis using a novel ternary natural deep eutectic solvent based on glycerol: Process optimization using ANN-GA, extraction mechanism and biological activity.

Ultrason Sonochem

September 2025

School of Pharmacy, Zunyi Medical University, Zunyi 563000, Guizhou, China; Guizhou Key Laboratory of Modern Traditional Chinese Medicine Creation, Zunyi 563000, Guizhou, China. Electronic address:

This study aimed to develop an efficient green ultrasound-assisted extraction (UAE) method for naringin (Nar) from Exocarpium Citri Grandis (ECG) using a glycerol-based ternary natural deep eutectic solvent (NADES) and explore its biofunctional relevance. After screening and single-factor optimization, the optimal NADES was identified as glycerol:malic acid:propanedioic acid (1:1:2 M ratio, 30 % water content). Extraction conditions (liquid-solid ratio, temperature, time) were optimized via response surface methodology (RSM) and an artificial neural network-genetic algorithm (ANN-GA), with ANN-GA demonstrating superior predictive capability.

View Article and Find Full Text PDF

Narrow electrochemical windows and high reactivity of aqueous solutions remain critical bottlenecks for the practical application of aqueous batteries. However, the mechanisms for tuning microscopic reactivity of HO molecules in aqueous electrolytes remain elusive. This study employs six ether molecules with distinct structures and solvation powers to regulate the microstructure of aqueous solutions.

View Article and Find Full Text PDF

Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.

View Article and Find Full Text PDF

Thermopower regulation of thermocells electrolyte engineering: progress and prospects.

Chem Commun (Camb)

September 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Thermocells (TECs) represent a promising technology for sustainable low-grade waste heat (<100 °C) harvesting, offering distinct advantages such as scalability, structural versatility, and high thermopower. However, their practical applications are still hindered by low energy conversion efficiency and stability issues. In recent studies, electrolyte engineering has been highlighted as a critical strategy to enhance their thermopower by regulating the solvation structure and redox ion concentration gradient, thereby improving conversion efficiency.

View Article and Find Full Text PDF

Single-Molecule Dual-Anchor Design Enables Extreme-Condition Lithium Metal Batteries Through Solvation Reconstruction and Cathode Polymerization.

Angew Chem Int Ed Engl

September 2025

State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology of Materials, Beijing University of Chemical Technology, Beijing, 10029, P.R. China.

Lithium metal batteries (LMBs) have emerged as the most promising candidate for next-generation high-energy-density energy storage systems. However, their practical implementation is hindered by the inability of conventional carbonate electrolytes to simultaneously stabilize the lithium metal anode and LiNiCoMnO (NCM811) cathode interfaces, particularly under extreme operating conditions. Herein, we present a transformative molecular design using 3,5-difluorophenylboronic acid neopentyl glycol ester (DNE), which uniquely integrates dual interfacial stabilization mechanisms in a single molecule.

View Article and Find Full Text PDF