Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Circadian genes play an important role in the field of drug metabolism. Flavin-containing monooxygenase 3 is a well-known phase I enzyme which participates in metabolism of many exogenous and endogenous substances, especially production of trimethylamine N-oxide. Here, we aimed to decipher diurnal rhythms of flavin-containing monooxygenase 3 expression and activity, and explore the regulation mechanism by clock genes. Our results showed that its mRNA and protein exhibited robust diurnal rhythms in mouse liver and cell lines. Consistently, significant alterations were observed for in vitro microsomal N-oxidation rates of procainamide, which kept in line with its protein expression at different time in wild-type and reverse erythroblastosis virus α knockout mice. Further, flavin-containing monooxygenase 3 was negatively regulated by E4 promoter-binding protein 4 in AML12 and Hepa1-6 cells, while it was positively influenced by reverse erythroblastosis virus α and brain and muscle ARNT-like protein-1. Moreover, luciferase reporter assays and electrophoretic mobility shift assays showed E4 promoter-binding protein 4 inhibited the transcription of flavin-containing monooxygenase 3 by binding to a D-box1 element (-1606/-1594 bp), while brain and muscle ARNT-like protein-1 positively activated the transcription via direct binding to three E-boxes (-863/-858 bp, -507/-498 bp, and -115/-104 bp) in this enzyme promoter. Taken together, this study would be helpful to reveal the mechanism of clock-controlled drug metabolism and facilitate the practice of chrono-therapeutics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biocel.2024.106538 | DOI Listing |