98%
921
2 minutes
20
The CAG and CTG trinucleotide repeat expansions cause more than 10 human neurodegenerative diseases. Intrastrand hairpins formed by trinucleotide repeats contribute to repeat expansions, establishing them as potential drug targets. High-resolution structural determination of CAG and CTG hairpins poses as a long-standing goal to aid drug development, yet it has not been realized due to the intrinsic conformational flexibility of repetitive sequences. We herein investigate the solution structures of CTG hairpins using nuclear magnetic resonance (NMR) spectroscopy and found that four CTG repeats with a clamping G-C base pair was able to form a stable hairpin structure. We determine the first solution NMR structure of dG(CTG)C hairpin and decipher a type I folding geometry of the TGCT tetraloop, wherein the two thymine residues form a T·T loop-closing base pair and the first three loop residues continuously stack. We further reveal that the CTG hairpin can be bound and stabilized by a small-molecule ligand, and the binding interferes with replication of a DNA template containing CTG repeats. Our determined high-resolution structures lay an important foundation for studying molecular interactions between native CTG hairpins and ligands, and benefit drug development for trinucleotide repeat expansion diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acschemneuro.3c00769 | DOI Listing |
Cell Rep
August 2025
Department of Biology, Tufts University, Medford, MA 02155, USA. Electronic address:
Hairpin-forming CAG/CTG repeats pose significant challenges to DNA replication. In S. cerevisiae, long CAG/CTG repeat tracts reposition from the interior of the nucleus to the nuclear pore complex (NPC) to maintain their integrity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Program in Genetics, Molecular, and Cellular Biology, Tufts University Graduate School of Biomedical Sciences, Boston, MA 02111.
CAG/CTG repeats are prone to expansion, causing several inherited human diseases. The initiating sources of DNA damage which lead to inaccurate repair of the repeat tract to cause expansions are not fully understood. Expansion-prone CAG/CTG repeats are actively transcribed and prone to forming stable R-loops with hairpin structures forming on the displaced single-stranded DNA (S-loops).
View Article and Find Full Text PDFVirology
December 2024
Agricultural Biotechnology Laboratory, Auxergen Inc., Riti Rossi Colwell Center, 701 E Pratt Street, Baltimore, MD 21202, USA; Auxergen S.r.l., Tecnopolis Science and Tecnopolis Park of the University of Bari, Valenzano, BA, Italy.
Unlike Ff, the packaging signal (PS) and the mechanism of integrative filamentous phage assembly remains largely unknown. Here we revived two Inoviridae prophage sequences, ϕLf2 and ϕLf-UK, as infectious virions that lysogenize black rot pathogen Xanthomonas campestris pv. campestris.
View Article and Find Full Text PDFBiomolecules
October 2024
Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
Dynamic mutations in some human genes containing trinucleotide repeats are associated with severe neurodegenerative and neuromuscular disorders-known as Trinucleotide (or Triplet) Repeat Expansion Diseases (TREDs)-which arise when the repeat number of triplets expands beyond a critical threshold. While the mechanisms causing the DNA triplet expansion are complex and remain largely unknown, it is now recognized that the expandable repeats lead to the formation of nucleotide configurations with atypical structural characteristics that play a crucial role in TREDs. These nonstandard nucleic acid forms include single-stranded hairpins, Z-DNA, triplex structures, G-quartets and slipped-stranded duplexes.
View Article and Find Full Text PDFMol Cell Biol
June 2025
Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas, USA.