98%
921
2 minutes
20
Nanostructures formed by the self-assembly of modified/unmodified amino acids have the potential to be useful in several biological/nonbiological applications. In that regard, the greater conformational space provided by γ-amino acids, owing to their additional backbone torsional degrees of freedom and enhanced proteolytic stability, compared to their α-counterparts, should be explored. Though, modified single amino acid-based nanomaterials such as nanobelts or hydrogels are developed by utilizing the monosubstituted γ-amino acids derived from the backbone homologation of phenylalanine (Phe). Examples of a single γ-amino acid-based porous nanostructure capable of accommodating solvent molecules are not really known. The crystal structures of a modified γ(R)Phe residue, Boc-γ(R)Phe-OH, at different temperatures, showed that hydrogen-bonded water molecules are forming a wire inside hydrophilic nanochannels. The dynamics of intermolecular interactions between the water wire and the inner wall of the channel with relation to the temperature change was investigated by analyzing the natural bonding orbital (NBO) calculation results performed with the single crystal structures obtained at different temperature points. The NBO results showed that from 325 K onward, the strength of water-water interactions in the water wire are getting weaker, whereas, for the water-inner wall interactions, it getting stronger, suggesting a favorable change in the orientation of water molecules with temperatures, for the latter.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10844418 | PMC |
http://dx.doi.org/10.1007/s00726-023-03372-4 | DOI Listing |
ACS Omega
September 2025
Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, California 90089, United States.
A nanosecond pulse transient plasma is employed to initiate and control the exothermic decomposition of ionic liquids, namely, a mixture of hydroxylammonium nitrate (HAN) and 1-ethyl-3-methylimidazolium ethyl sulfate [EMIM]/[EtSO], as well as some noncombustible ionic liquids. Here, the plasma is discharged in a cylindrical geometry with a coaxial center wire electrode. High voltage (20 kV) nanosecond pulses (20 ns) at various frequencies up to 10 kHz produce a plasma discharge in the ionic liquid that initiates its nonthermal decomposition.
View Article and Find Full Text PDFJ Environ Manage
September 2025
Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Sichuan, 610065, China.
Extensive cut slopes resulting from anthropogenic engineering activities in alpine mining areas of the Qinghai-Tibet Plateau have led to soil structure fragmentation and nutrient loss, threatening ecosystem stability. This study systematically compared soil aggregate stability and carbon-nitrogen-phosphorus nutrient characteristics among three restoration methods for cut slopes (three-dimensional netting [TCS], frame beams [FCS], and galvanized wire mesh [GCS]) relative to unrestored cut slopes (UCS) in the Jiama Mining Area, Tibet. The results demonstrated that TCS and FCS significantly increased the proportion of soil macroaggregates (>0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Institute for Energy Research (School for Future Technology), School of the Environment and Safety Engineering, Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
The detection of hydrogen sulfide (HS) in humid environments remains a significant challenge, particularly in wearable gas sensors where humidity, mechanical flexibility, and power consumption are critical constraints. In this study, we introduce a stretchable, humidity-resistant HS sensor based on microcrumpled SnO quantum-wire films, designed for efficient gas detection at room temperature with low-power consumption. The sensor's architecture enhances gas adsorption by increasing the active surface area while minimizing water accumulation through surface energy modulation.
View Article and Find Full Text PDFPLoS One
August 2025
Hydrogeological and Engineering Geological Brigade, Hubei Provincial Bureau of Geology, Jingzhou, Hubei, China.
In the context of intensifying global environmental pressures, heavy rainfall in extreme climate regions significantly increases landslide risks, threatening societal stability and sustainable development. While research on rainfall-induced landslides is well-established, the deformation and instability mechanisms of landslides under complex rainfall patterns warrant further investigation. This study focuses on the Wangjiapo landslide in the Three Gorges Reservoir area.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2025
Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, China; International VIP Dental Clinic, Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300041, China. Electronic address:
This study addresses the challenges of slow and inadequate bone formation during the repair of bone defects by developing a novel porous biological scaffold with a vertical microchannel structure, loaded with the angiogenesis-promoting drug Deferoxamine (DFO). Utilizing 3D printing technology, cylindrical porous templates made of PLGA were manufactured, followed by the integration of Linear Wire Arrays (LWAs) technology and freeze-drying techniques to fabricate scaffolds with microchannels. The scaffolds' surface morphology was characterized using scanning electron microscopy, while their porosity, water absorption properties, and mechanical strength were quantified.
View Article and Find Full Text PDF