Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: To assess the utility of combining contrast-enhanced magnetic resonance imaging (CE-MRI) radiomics features with clinical variables in predicting the response to induction chemotherapy (IC) for primary central nervous system lymphoma (PCNSL).

Methods: A total of 131 patients with PCNSL (101 in the training set and 30 in the testing set) who had undergone contrast-enhanced MRI scans were retrospectively analyzed. Pyradiomics was utilized to extract radiomics features, and the clinical variables of the patients were gathered. Radiomics prediction models were developed using different combinations of feature selection methods and machine learning models, and the best combination was ultimately chosen. We screened clinical variables associated with treatment outcomes and developed clinical prediction models. The predictive performance of radiomics model, clinical model, and combined model, which integrates the best radiomics model and clinical characteristics, was independently assessed and compared using Receiver Operating Characteristic (ROC) curves.

Results: In total, we extracted 1598 features. The best radiomics model we selected as the best utilized T-test and Recursive Feature Elimination (RFE) for feature selection and logistic regression for model building. Serum Interleukin 2 Receptor (IL-2R) and Eastern Cooperative Oncology Group (ECOG) Score were utilized to develop a clinical predictive model for assessing the response to induction chemotherapy. The results of the testing set revealed that the combined prediction model (radiomics and IL-2R) achieved the highest area under the ROC curve at 0.868 (0.683, 0.967), followed by the radiomics model at 0.857 (0.681, 0.957), and the clinical prediction model (IL-2R and ECOG) at 0.618 (0.413, 0.797). The combined model was significantly more accurate than the clinical model, with an AUC of 0.868 compared to 0.618 (P < 0.05). While the radiomics model had slightly better predictive power than the clinical model, this difference was not statistically significant (AUC, 0.857 vs. 0.618, P > 0.05).

Conclusions: Our prediction model, which combines radiomics signatures from CE-MRI with serum IL-2R, can effectively stratify patients with PCNSL before high-dose methotrexate (HD-MTX) -based chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11060-023-04554-6DOI Listing

Publication Analysis

Top Keywords

radiomics model
16
model
13
radiomics features
12
induction chemotherapy
12
clinical variables
12
prediction model
12
radiomics
10
clinical
10
contrast-enhanced mri
8
primary central
8

Similar Publications

Purpose: Targeted therapy with lenvatinib is a preferred option for advanced hepatocellular carcinoma, however, predicting its efficacy remains challenging. This study aimed to build a nomogram integrating clinicoradiological indicators and radiomics features to predict the response to lenvatinib in patients with hepatocellular carcinoma.

Methods: This study included 211 patients with hepatocellular carcinoma from two centers, who were allocated into the training (107 patients), internal test (46 patients) and external test set(58 patients).

View Article and Find Full Text PDF

Neoadjuvant immunochemotherapy (nICT) has demonstrated significant potential in improving pathological response rates and survival outcomes for patients with locally advanced esophageal squamous cell carcinoma (ESCC). However, substantial interindividual variability in therapeutic outcomes highlights the urgent need for more precise predictive tools to guide clinical decision-making. Traditional biomarkers remain limited in both predictive performance and clinical feasibility.

View Article and Find Full Text PDF

Minimum sample size calculation for radiomics-based binary outcome prediction models: Theoretical framework and practical example.

Radiother Oncol

September 2025

Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China; School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China. Electronic address:

Background And Purpose: Determining the appropriate sample size for developing robust radiomics-based binary outcome prediction models and identifying the maximum number of predictors safely allowable within a fixed dataset size remain critical yet challenging tasks. This study aims to propose and demonstrate a structured method for addressing these issues, enhancing methodological rigor and practicality in radiomics research.

Materials And Methods: We introduce a comprehensive sample size calculation framework for binary outcome prediction models in radiomic studies.

View Article and Find Full Text PDF

Purpose: The present study aimed to develop a noninvasive predictive framework that integrates clinical data, conventional radiomics, habitat imaging, and deep learning for the preoperative stratification of MGMT gene promoter methylation in glioma.

Materials And Methods: This retrospective study included 410 patients from the University of California, San Francisco, USA, and 102 patients from our hospital. Seven models were constructed using preoperative contrast-enhanced T1-weighted MRI with gadobenate dimeglumine as the contrast agent.

View Article and Find Full Text PDF

Purpose: To build computed tomography (CT)-based radiomics models, with independent external validation, to predict recurrence and disease-specific mortality in patients with colorectal liver metastases (CRLM) who underwent liver resection.

Methods: 113 patients were included in this retrospective study: the internal training cohort comprised 66 patients, while the external validation cohort comprised 47. All patients underwent a CT study before surgery.

View Article and Find Full Text PDF