98%
921
2 minutes
20
Background: Sepsis can cause immune dysregulation and multiple organ failure in patients and eventually lead to death. The gut microbiota has demonstrated its precise therapeutic potential in the treatment of various diseases. This study aimed to discuss the structural changes of the gut microbiota in patients with sepsis and to analyze the differences in the gut microbiota of patients with different prognoses.
Methods: We conducted a multicenter study in which rectal swab specimens were collected on the first and third days of sepsis diagnosis. A total of 70 specimens were collected, and gut microbiota information was obtained by 16S rRNA analysis.
Results: The relative abundance of Enterococcus decreased in rectal swab specimens during the first three days of diagnosis in patients with sepsis, while the relative abundance of inflammation-associated Bacillus species such as Escherichia coli, Enterobacteriaceae, and Bacteroidetes increased. By comparing the differences in the flora of the survival group and the death group, we found that the abundance of Veillonella and Ruminococcus in the death group showed an increasing trend (p < 0.05), while the abundance of Prevotella_6 and Prevotella_sp_S4_BM14 was increased in surviving patients (p < 0.05).
Conclusions: The Firmicutes/Bacteroidetes ratio, reflecting overall gut microbial composition, was significantly lower on day three of sepsis diagnosis. Changes in the abundance of specific gut microbiota may serve as prognostic markers in patients with sepsis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10832068 | PMC |
http://dx.doi.org/10.1186/s12866-024-03188-6 | DOI Listing |
Nutr Rev
September 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDFPLoS One
September 2025
School of Animal and Comparative Biomedical Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona, United States of America.
The Gram-negative bacterium Campylobacter jejuni is part of the commensal gut microbiota of numerous animal species and a leading cause of bacterial foodborne illness in humans. Most complete genomes of C. jejuni are from strains isolated from human clinical, poultry, and ruminant samples.
View Article and Find Full Text PDF