Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Importance: The interindividual differences in severity of acute radiation dermatitis are not well understood. To date, the pathomechanism and interplay of microbiome and radiodermatitis before and during treatment remain largely unknown.

Objective: To assess the association of skin microbiome baseline composition and dynamics with severity of radiodermatitis in patients undergoing adjuvant radiotherapy for breast cancer.

Design, Setting, And Participants: A longitudinal prospective pilot observational study was conducted between January 2017 and January 2019. Sequencing results were received in March 2021, and the data were analyzed from August 2021 to March 2023. This study was performed at an urban academic university cancer center. A total of 21 female patients with breast cancer after surgery were consecutively approached, of which 1 patient withdrew consent before the study started.

Exposure: Adjuvant radiotherapy for breast cancer for 7 weeks.

Main Outcomes And Measures: The main outcome was the association of baseline skin microbiome composition and its dynamics with the severity of radiodermatitis. A total of 360 skin microbiome samples from patients were analyzed, taken before, during, and after radiotherapy, from both the treated and contralateral healthy sides. The skin microbiome samples were analyzed using 16S (V1-V3) amplicon sequencing and quantitative polymerase chain reaction bacterial enumeration.

Results: Twenty female patients with breast cancer after surgery who underwent radiotherapy enrolled in the study had a median (range) age of 61 (37-81) years. The median (range) body mass index of the patients was 24.2 (17.6-38.4). The 16S sequencing revealed that low (<5%) relative abundance of commensal skin bacteria (Staphylococcus epidermidis, Staphylococcus hominis, Cutibacterium acnes) at baseline composition was associated with the development of severe radiodermatitis with an accuracy of 100% (sensitivity and specificity of 100%, P < .001). Furthermore, in patients with severe radiodermatitis, quantitative polymerase chain reaction bacterial enumeration revealed a general non-species-specific overgrowth of skin bacterial load before the onset of severe symptoms. Subsequently, the abundance of commensal bacteria increased in severe radiodermatitis, coinciding with a decline in total bacterial load.

Conclusions And Relevance: The findings of this observational study indicated a potential mechanism associated with the skin microbiome for the pathogenesis of severe radiodermatitis, which may be a useful biomarker for personalized prevention of radiodermatitis in patients undergoing adjuvant radiotherapy for breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10835615PMC
http://dx.doi.org/10.1001/jamaoncol.2023.6533DOI Listing

Publication Analysis

Top Keywords

skin microbiome
20
breast cancer
16
patients breast
12
association skin
8
radiodermatitis patients
8
composition dynamics
8
dynamics severity
8
severity radiodermatitis
8
adjuvant radiotherapy
8
radiotherapy breast
8

Similar Publications

Genital microbiota in infertile couples.

Reprod Biomed Online

May 2025

Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, University Hospital of Lausanne, Lausanne, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland. Electronic address:

Research Question: What is the composition of bacterial communities at various genital sites and are there potential interactions between partners' microbiota?

Design: This observational study involved metagenomic analyses of samples collected from male and female partners of couples undergoing fertility treatment. Samples included vaginal and penile swabs, as well as follicular fluid and semen, which were analysed using next-generation sequencing.

Results: The bacterial community profiles of different genital tract niches were distinct, niche-specific compositions, with female samples predominantly featuring Lactobacillus species and male samples displaying greater microbial diversity, including genital-specific and skin-associated taxa.

View Article and Find Full Text PDF

The interaction between the skin microbiome and antimicrobial peptides within the epidermal immune microenvironment: Bridging insights into atopic dermatitis.

Allergol Int

September 2025

Atopy (Allergy) Research Center, Juntendo University Graduate School of Medicine, Tokyo, Japan; Faculty of International Liberal Arts, Juntendo University, Tokyo, Japan. Electronic address:

The epidermal immune microenvironment is a multifaceted system in which the interplay between the skin microbiome and antimicrobial peptides plays a pivotal role in sustaining skin homeostasis and preventing dysbiosis. Disruption of these interactions can lead to inflammatory skin conditions such as atopic dermatitis. This review aims to explore the complex mechanisms by which antimicrobial peptides and the skin microbiome communicate within the epidermal immune microenvironment, emphasizing causal dynamics and the dual role of antimicrobial peptides.

View Article and Find Full Text PDF

Introduction: Changes in the skin microbiome in atopic dermatitis include a reduced bacterial diversity and increased abundance of Staphylococcus aureus. Topical antibiotics and antiseptics may decrease bacterial pathogens, but lack positive effects on microbiome diversity.

Methods: In this double-blind, intraindividual vehicle-controlled pilot study, n = 20 patients received a gel containing a defined extract (Spiralin®) of the microalgae Spirulina platensis, previously shown to exert anti-microbial effects, or vehicle on target lesions of similar size and clinical activity.

View Article and Find Full Text PDF

Analysis of the main characteristics of children's skin moisturizers in the Brazilian market.

J Pediatr (Rio J)

September 2025

Universidade de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil.

Objective: One of the possible causes of skin microbiome imbalance is the use of dermocosmetics with inadequate pH. This study aims to critically evaluate several children's moisturizers regarding their characteristics so that we can verify the tendency of the products available on the market and whether they are slightly acidic. The importance of dermocosmetics formulated without ingredients with allergenic potential is also discussed in this work.

View Article and Find Full Text PDF

A strategy to re-sensitise drug-resistant Gram-positive bacteria to oxazolidinone-class antibiotics.

EBioMedicine

September 2025

State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong. Electronic address:

Background: Multidrug-resistant bacterial infections have high mortality rates and few treatment options. Synergistic combinations may improve clinical outcome but traditional strategies often damage healthy microbiome. Oxazolidinone-class antibiotics are typical last-resort drugs for treating drug-resistant bacterial infections but are becoming less effective due to resistance development.

View Article and Find Full Text PDF