Automated pancreatic segmentation and fat fraction evaluation based on a self-supervised transfer learning network.

Comput Biol Med

Department of Radiology, Changhai Hospital of Shanghai, Naval Medical University, Shanghai, 200433, China; College of Electronic and Information Engineering, Tongji University, Shanghai, 201804, China. Electronic address:

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Accurate segmentation of the pancreas from abdominal computed tomography (CT) images is challenging but essential for the diagnosis and treatment of pancreatic disorders such as tumours and diabetes. In this study, a dataset with 229 sets of high-resolution CT images was generated and annotated. We proposed a novel 3D segmentation model named nnTransfer (nonisomorphic transfer learning) net, which employs generative model structure for self-supervision to facilitate the network's learning of image attributes from unlabelled data. The effectiveness for pancreas segmentation of nnTransfer was assessed using the Hausdorff distance (HD) and Dice similarity coefficient (DSC) on the dataset. Additionally, a histogram analysis with local thresholding was used to achieve automated whole-volume measurement of pancreatic fat (fat volume fraction, FVF). The proposed technique performed admirably on the dataset, with DSC: 0.937 ± 0.019 and HD: 2.655 ± 1.479. The mean pancreas volume and FVF of the pancreas were 91.95 ± 23.90 cm and 12.67 % ± 9.84 %, respectively. The nnTransfer functioned flawlessly and autonomously, facilitating the use of the FVF to evaluate pancreatic disease, particularly in patients with diabetes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.compbiomed.2024.107989DOI Listing

Publication Analysis

Top Keywords

transfer learning
8
automated pancreatic
4
segmentation
4
pancreatic segmentation
4
segmentation fat
4
fat fraction
4
fraction evaluation
4
evaluation based
4
based self-supervised
4
self-supervised transfer
4

Similar Publications

Background: A clear understanding of minimal clinically important difference (MCID) and substantial clinical benefit (SCB) is essential for effectively implementing patient-reported outcome measurements (PROMs) as a performance measure for total knee arthroplasty (TKA). Since not achieving MCID and SCB may reflect suboptimal surgical benefit, the primary aim of this study was to use machine learning to predict patients who may not achieve the threshold-based outcomes (i.e.

View Article and Find Full Text PDF

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Automatic markerless estimation of infant posture and motion from ordinary videos carries great potential for movement studies "in the wild", facilitating understanding of motor development and massively increasing the chances of early diagnosis of disorders. There has been a rapid development of human pose estimation methods in computer vision, thanks to advances in deep learning and machine learning. However, these methods are trained on datasets that feature adults in different contexts.

View Article and Find Full Text PDF

This study aims to investigate the predictive value of combined phenotypic age and phenotypic age acceleration (PhenoAgeAccel) for benign prostatic hyperplasia (BPH) and develop a machine learning-based risk prediction model to inform precision prevention and clinical management strategies. The study analyzed data from 784 male participants in the US National Health and Nutrition Examination Survey (NHANES, 2001-2008). Phenotypic age was derived from chronological age and nine serum biomarkers.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF