A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Reverse diversity-biomass patterns in grasslands are constrained by climates and stoichiometry along an elevational gradient. | LitMetric

Reverse diversity-biomass patterns in grasslands are constrained by climates and stoichiometry along an elevational gradient.

Sci Total Environ

Key Laboratory of Soil Ecology and Health in Universities of Yunnan Province, School of Ecology and Environmental Sciences, Yunnan University, Kunming, PR China; Ministry of Education Key Laboratory for Transboundary Eco-security of Southwest China, Yunnan University, Kunming, PR China; Yunnan Key L

Published: March 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Diversity and biomass play an important role in grassland ecosystem functions. However, diversity and biomass are variable because of their high sensitivity to environmental change in natural ecosystems. How plant diversity, biomass, and driving factors (climates, soils, and plants) in grasslands vary with environmental change remains unclear. We conducted intensive fieldwork (≈1000 km transect) on plant diversity, biomass, and associated drivers (i.e., climates, soils, and plants) to identify the patterns of diversity and biomass along an elevational gradient (50-4000 m) in grasslands of southwest China. Grassland biomass decreased significantly, but grassland diversity increased with increasing elevation. Consequently, a significant reverse pattern between biomass and diversity was detected along an elevational gradient. We also observed that the reverse pattern was primarily driven by the shifts in climates (i.e., temperature and precipitation), leaf stoichiometric traits (i.e., leaf N:P ratio), and soil properties (i.e., soil N content) along the elevational gradient. Our results contradicted previous studies on the positive diversity-biomass relationships, suggesting that previous studies might weaken the effects of climatic factors and plant stoichiometry under environmental change. These findings revealed that the reverse pattern between diversity and biomass in grasslands was shaped by the combined effects (climates, plants, soils) in grasslands, thus providing new insights into the debates and predictions on the diversity and biomass in grasslands under climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.170416DOI Listing

Publication Analysis

Top Keywords

diversity biomass
28
elevational gradient
16
environmental change
12
reverse pattern
12
diversity
9
biomass
9
plant diversity
8
climates soils
8
soils plants
8
previous studies
8

Similar Publications