98%
921
2 minutes
20
Multifunctional lakes are highly susceptible to anthropogenic influences, potentially introducing exogenous pollutants or nutrients into aquatic sediments. This, in turn, affects the mercury (Hg) methylation in the sediments. This study was conducted in the Changshou Lake, a representative multifunctional lake in southwestern China, with a specific focus on investigating the Hg variations, the potential of Hg methylation, and the influential factors affecting the methylation process within sediments across different functional areas. The results revealed significant variations in total Hg concentrations between the ecological culture area (area I), the ecological tourism area (area II), and the wetland protection area (area III), suggesting the possibility of exogenous Hg introduction associated with human activities. Furthermore, sediments from areas I and II displayed a greater potential for Hg methylation. This was ascribed to the enhanced diversity and relative abundance of Hg-methylating microorganisms, especially Geobacteraceae, induced by elevated levels of dissolved organic carbon in these two areas from human activities like historical cage culture. This study provides evidence that anthropogenic activities enhance the process of Hg methylation in the sediments of multifunctional lakes, highlighting the necessity of implementing comprehensive scientific water quality management practices to mitigate the negative impacts of human influences on these unique ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2024.133505 | DOI Listing |
Environ Sci Technol
September 2025
Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
Arsenic (As) is a prevalent toxic element, posing significant risks to organisms, including microbes. While microbial arsenic detoxification has been extensively studied in bacteria, archaeal mechanisms remain understudied. Here, we investigated arsenic resistance genes in , one of the most abundant archaeal lineages on Earth.
View Article and Find Full Text PDFEnviron Pollut
August 2025
Centro de Química Estrutural, Institute of Molecular Sciences and Department of Chemical Engineering, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, Lisboa, 1049-001, Portugal; Centre for Northern Studies, Université Laval, Québec, QC, Canada. Electronic address: joao.cana
Mercury (Hg) is a natural occurring element but is often emitted from anthropogenic sources and reaches the Arctic via long-range atmospheric transport. Organic matter (OM)-rich thermokarst lakes are characteristic features of the permafrost landscape in this region, where monomethylmercury (MMHg) production can be enhanced, as this process is mainly carried out by prokaryotes. To better understand the complex Hg biogeochemical cycle, two distinct thermokarst lakes (SAS 1A and SAS 2A) in sporadic permafrost in the Sasapimakwananistikw (SAS) River Valley, Canadian Subarctic, were sampled during winter and summer of 2022.
View Article and Find Full Text PDFISME J
August 2025
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, United States.
Wetlands are a major source of methane emissions and contribute to the observed increase in atmospheric methane over the last 20 years. Methane production in wetlands is the final step of carbon decomposition performed by anaerobic archaea. Although hydrogen/carbon dioxide and acetate are the substrates most often attributed to methanogenesis, other substrates - such as methylated compounds - may additionally play important roles in driving methane production in wetland systems.
View Article and Find Full Text PDFResearch (Wash D C)
August 2025
Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
Cold seep ecosystems serve as critical hubs in marine carbon cycling through methane emissions and organic matter processing. While terrestrial lignin constitutes a major fraction of persistent organic carbon in cold seep sediments, its microbial transformation pathways in deep-sea cold seep environments remain unexplored. Here, we present the first comprehensive analysis of lignin distribution across sediment horizons at the Haima cold seep, coupled with a multi-omics investigation of microbial lignin metabolism.
View Article and Find Full Text PDFMar Environ Res
October 2025
Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China. Electronic address:
2-Methyl-4-isothiazoline-3-one (MIT) is a widely employed antimicrobial agent frequently detected in environments; however, current documentation regarding its impacts on microbial communities and biodegradation processes remains limited. Herein, marine sediment systems were established to investigate the MIT impacts under tiered concentrations (CK, 0 μg/L; LC, 5 μg/L; MC, 50 μg/L; HC 5 mg/L). The extracellular polymeric substance contents increased in the LC and MC groups, but not in the HC group, after one day of exposure.
View Article and Find Full Text PDF