98%
921
2 minutes
20
Background: Cortical hyperarousal and ruminative thinking are common aspects of insomnia that have been linked with greater connectivity in the default mode network (DMN). Therefore, disrupting network activity within the DMN may reduce cortical and cognitive hyperarousal and facilitate better sleep.
Objective: This trial aims to establish a novel, noninvasive method for treating insomnia through disruption of the DMN with repetitive transcranial magnetic stimulation, specifically with continuous theta burst stimulation (cTBS). This double-blind, pilot randomized controlled trial will assess the efficacy of repetitive transcranial magnetic stimulation as a novel, nonpharmacological approach to improve sleep through disruption of the DMN prior to sleep onset for individuals with insomnia. Primary outcome measures will include assessing changes in DMN functional connectivity before and after stimulation.
Methods: A total of 20 participants between the ages of 18 to 50 years with reported sleep disturbances will be recruited as a part of the study. Participants will then conduct an in-person screening and follow-on enrollment visit. Eligible participants then conduct at-home actigraphic collection until their first in-residence overnight study visit. In a double-blind, counterbalanced, crossover study design, participants will receive a 40-second stimulation to the left inferior parietal lobule of the DMN during 2 separate overnight in-residence visits. Participants are randomized to the order in which they receive the active stimulation and sham stimulation. Study participants will undergo a prestimulation functional magnetic resonance imaging scan and a poststimulation functional magnetic resonance imaging scan prior to sleep for each overnight study visit. Sleep outcomes will be measured using clinical polysomnography. After their first in-residence study visit, participants conduct another at-home actigraphic collection before returning for their second in-residence overnight study visit.
Results: Our study was funded in September 2020 by the Department of Defense (W81XWH2010173). We completed the enrollment of our target study population in the October 2022 and are currently working on neuroimaging processing and analysis. We aim to publish the results of our study by 2024. Primary neuroimaging outcome measures will be tested using independent components analysis, seed-to-voxel analyses, and region of interest to region of interest analyses. A repeated measures analysis of covariance (ANCOVA) will be used to assess the effects of active and sham stimulation on sleep variables. Additionally, we will correlate changes in functional connectivity to polysomnography-graded sleep.
Conclusions: The presently proposed cTBS protocol is aimed at establishing the initial research outcomes of the effects of a single burst of cTBS on disrupting the network connectivity of the DMN to improve sleep. If effective, future work could determine the most effective stimulation sites and administration schedules to optimize this potential intervention for sleep problems.
Trial Registration: ClinicalTrials.gov NCT04953559; https://clinicaltrials.gov/ct2/show/NCT04953559.
International Registered Report Identifier (irrid): DERR1-10.2196/51212.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858423 | PMC |
http://dx.doi.org/10.2196/51212 | DOI Listing |
Phys Eng Sci Med
September 2025
Laboratório de Biomagnetismo, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil.
Rev Cardiovasc Med
August 2025
Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, 430030 Wuhan, Hubei, China.
Background: The causal relationship between migraines and patent foramen ovale (PFO) remains controversial, and a major unresolved question is how to define migraines attributable to PFO. Thus, this study aimed to determine if brain lesions could be a potential indicator of PFO-related migraines.
Methods: Consecutive migraine patients from 2017 to 2019 who underwent transthoracic echocardiography or transcranial Doppler examination with an agitated saline contrast injection were assessed for right-to-left shunts.
Neurol Res
September 2025
Department of Physiology, All India Institute of Medical Sciences (AIIMS), New Delhi, India.
Background: Spinal Cord Injury (SCI) leads to partial or complete sensorimotor loss because of the spinal lesions caused either by trauma or any pathological conditions. Rehabilitation, one of the therapeutic methods, is considered to be a significant part of therapy supporting patients with spinal cord injury. Newer methods are being incorporated, such as repetitive Transcranial Magnetic Stimulation (rTMS), a Non-Invasive Brain Stimulation (NIBS) technique to induce changes in the residual neuronal pathways, facilitating cortical excitability and neuroplasticity.
View Article and Find Full Text PDFJ Affect Disord
September 2025
Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada; Peter Boris Centre for Addictions Research, St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada; Seniors Mental Health Program, Department of Psychiatry and Neurosciences, McMaster University, Hamil
Electroencephalography (EEG) is a comparatively inexpensive and non-invasive recording technique of neural activity, making it a valuable tool for biomarker discovery in transcranial magnetic stimulation (TMS). This systematic review aimed to examine mechanistic and predictive biomarkers, identified through TMS-EEG or resting-state EEG, of treatment response to TMS in psychiatric and neurocognitive disorders. Nineteen articles were obtained via Embase, APA PsycInfo, MEDLINE, and manual search; conditions included, unipolar depression (k = 13), Alzheimer's disease (k = 3), bipolar depression (k = 2), and schizophrenia (k = 2).
View Article and Find Full Text PDFNeurosci Lett
September 2025
Institute of Neuroscience & Department of Physiology, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, PR China; NHC Key Laboratory of Neurodegenerative Disease (University of South China), Hengyang 421001 Hunan, PR China; The Second Affiliated Hospital, Brain Disease Resea
Radiation-induced brain injury (RIBI) is a prevalent complication following radiotherapy for head and neck tumors, and its effective therapeutic strategies are lacking. Ferroptosis, an iron-dependent cell death, has recently emerged as an important mechanism of radiation-induced cell death. Repetitive transcranial magnetic stimulation (rTMS) is a noninvasive neuro-interventional technique with antioxidant and neuroprotective properties.
View Article and Find Full Text PDF