Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The liquid extract method is commonly used to evaluate the cytotoxicity and bioactivity of materials. Although ISO has recommended guidelines for test methods, variations in elution period, and shape of samples can influence the biological outcomes. The aim of this study was to investigate the influence of material form and elution period of Biodentine on dental pulp stem cells (DPSCs)' proliferation and mineralization. Biodentine (0.2 g) discs or powder were immersed in culture media (10 mL) for 1, 3 or 7 days (D1, D3 and D7). The eluents were filtered and used to treat DPSC. The calcium release profile and pH were determined. Cell proliferation was evaluated by MTS for 3 days, and mineralization and differentiation were assessed by alizarin red S staining (Cang of DNA) and qRT-PCR (MEPE, DSPP, DMP-1, RUNX2, COL-I and OCN) for 14 days. Statistical analysis was performed with a one or two-way ANOVA and post hoc Tukey's test (pH, calcium release and proliferation) or Mann-Whitney test (α = 0.05). pH and calcium ion release of powdered eluents were significantly higher than disc eluents. Powdered eluent promoted extensive cell death, while the disc form was cytocompatible. All disc eluents significantly increased the gene expression and mineralization after 14 days compared to the untreated control. D7 induced less mineralization and differentiation compared to D1 and D3. Thus, the materials' form and elution time are critical aspects to be considered when evaluating the bioactivity of materials, since this binomial can affect positively and negatively the biological outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10816296PMC
http://dx.doi.org/10.3390/jfb15010001DOI Listing

Publication Analysis

Top Keywords

mineralization differentiation
12
elution time
8
dental pulp
8
pulp stem
8
stem cells
8
bioactivity materials
8
elution period
8
biological outcomes
8
form elution
8
calcium release
8

Similar Publications

Efficient degradation mechanism of fomesafen by earthworms and gut degrading bacteria synthetic community.

Pestic Biochem Physiol

November 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.

View Article and Find Full Text PDF

Cerium (Ce), the most abundant of the rare Earth elements (REEs), is increasingly recognized as an environmental contaminant due to its growing applications in various industrial and agricultural sectors. This study investigates the physiological, biochemical, and molecular responses of Brassica rapa L. plants to varying concentrations of Ce exposure to elucidate its effects on plant growth, metabolism, and stress responses.

View Article and Find Full Text PDF

Lotus seed (Nelumbo nucifera) protein-derived calcium-binding peptides: Isolation, characterization, and osteogenic effect.

Int J Biol Macromol

September 2025

Major of Human Bioconvergence, Division of Smart Healthcare, Pukyong National University, Busan 48513, Republic of Korea. Electronic address:

Natural protein-derived peptides are gaining attention for their potential in promoting health, particularly in nutraceutical formulations. In this study, calcium-binding peptides from lotus seed were produced and characterized using UV, FT-IR, Raman, and EDS, and SEM. The calcium-peptide (LSPIH-Ca) complex was subjected to its osteogenic effect in murine bone marrow-derived mesenchymal stem cells (D1 MSCs).

View Article and Find Full Text PDF

Multidimensional Regulation of Bone Marrow Niche Using Extracorporeal Shock Wave Responsive Nanocomposites for Osteoporosis Therapy.

Small

September 2025

CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.

Multidimensional modulation of the bone marrow niche represents a pivotal therapeutic strategy for bone-related disorders. However, its clinical translation remains challenging due to the inherent limitations imposed by the bone physiological barrier. Herein, a bone cavity-targeted nanocomposite (ZCD) is developed that can respond to extracorporeal shock wave (ESW), enabling triaxial regulation by inhibiting adipogenic differentiation, promoting osteogenic differentiation, and suppressing osteoclast activity.

View Article and Find Full Text PDF

Royal jelly (RJ), secreted by honeybees, contains major fatty acids such as 10-hydroxy-2-decenoic acid (10H2DA) and 10-hydroxydecanoic acid (10HDAA), which are considered to contribute to bone metabolism. However, these fatty acids are rapidly metabolized in the liver following ingestion, resulting in 2-decenoic acid (2DA) and sebacic acid (SA), respectively. Therefore, elucidating the roles of these metabolites in bone metabolism is of considerable importance.

View Article and Find Full Text PDF