A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Development and validation of nomograms using photoacoustic imaging and 2D ultrasound to predict breast nodule benignity and malignancy. | LitMetric

Development and validation of nomograms using photoacoustic imaging and 2D ultrasound to predict breast nodule benignity and malignancy.

Postgrad Med J

Ultrasound Department, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China.

Published: April 2024


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The application of photoacoustic imaging (PAI), utilizing laser-induced ultrasound, shows potential in assessing blood oxygenation in breast nodules. However, its effectiveness in distinguishing between malignant and benign nodules remains insufficiently explored.

Purpose: This study aims to develop nomogram models for predicting the benign or malignant nature of breast nodules using PAI.

Method: A prospective cohort study enrolled 369 breast nodules, subjecting them to PAI and ultrasound examination. The training and testing cohorts were randomly divided into two cohorts in a ratio of 3:1. Based on the source of the variables, three models were developed, Model 1: photoacoustic-BIRADS+BMI + blood oxygenation, Model 2: BIRADS+Shape+Intranodal blood (Doppler) + BMI, Model 3: photoacoustic-BIRADS+BIRADS+ Shape+Intranodal blood (Doppler) + BMI + blood oxygenation. Risk factors were identified through logistic regression, resulting in the creation of three predictive models. These models were evaluated using calibration curves, subject receiver operating characteristic (ROC), and decision curve analysis.

Results: The area under the ROC curve for the training cohort was 0.91 (95% confidence interval, 95% CI: 0.88-0.95), 0.92 (95% CI: 0.89-0.95), and 0.97 (95% CI: 0.96-0.99) for Models 1-3, and the ROC curve for the testing cohort was 0.95 (95% CI: 0.91-0.98), 0.89 (95% CI: 0.83-0.96), and 0.97 (95% CI: 0.95-0.99) for Models 1-3.

Conclusions: The calibration curves demonstrate that the model's predictions agree with the actual values. Decision curve analysis suggests a good clinical application.

Download full-text PDF

Source
http://dx.doi.org/10.1093/postmj/qgad146DOI Listing

Publication Analysis

Top Keywords

breast nodules
12
photoacoustic imaging
8
calibration curves
8
decision curve
8
roc curve
8
097 95%
8
95%
7
models
6
development validation
4
validation nomograms
4

Similar Publications