Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Background: The application of photoacoustic imaging (PAI), utilizing laser-induced ultrasound, shows potential in assessing blood oxygenation in breast nodules. However, its effectiveness in distinguishing between malignant and benign nodules remains insufficiently explored.
Purpose: This study aims to develop nomogram models for predicting the benign or malignant nature of breast nodules using PAI.
Method: A prospective cohort study enrolled 369 breast nodules, subjecting them to PAI and ultrasound examination. The training and testing cohorts were randomly divided into two cohorts in a ratio of 3:1. Based on the source of the variables, three models were developed, Model 1: photoacoustic-BIRADS+BMI + blood oxygenation, Model 2: BIRADS+Shape+Intranodal blood (Doppler) + BMI, Model 3: photoacoustic-BIRADS+BIRADS+ Shape+Intranodal blood (Doppler) + BMI + blood oxygenation. Risk factors were identified through logistic regression, resulting in the creation of three predictive models. These models were evaluated using calibration curves, subject receiver operating characteristic (ROC), and decision curve analysis.
Results: The area under the ROC curve for the training cohort was 0.91 (95% confidence interval, 95% CI: 0.88-0.95), 0.92 (95% CI: 0.89-0.95), and 0.97 (95% CI: 0.96-0.99) for Models 1-3, and the ROC curve for the testing cohort was 0.95 (95% CI: 0.91-0.98), 0.89 (95% CI: 0.83-0.96), and 0.97 (95% CI: 0.95-0.99) for Models 1-3.
Conclusions: The calibration curves demonstrate that the model's predictions agree with the actual values. Decision curve analysis suggests a good clinical application.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/postmj/qgad146 | DOI Listing |